Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Zhao Ruofan, Qi Xingjun, Guo Dongmei, Yang Hongchao, Qi Sheng. Research on Nondestructive Testing and Evaluation of Stiffness of Stone Arch Bridges Based on Modal Testing[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 223-229. doi: 10.3724/j.gyjzG23051108
Citation: WANG Qingli, ZHAO Jie, PENG Kuan. Tests on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubes Connected by Thread Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 13-22. doi: 10.3724/j.gyjzG22102805

Tests on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubes Connected by Thread Under Axial Compression

doi: 10.3724/j.gyjzG22102805
  • Received Date: 2022-10-28
    Available Online: 2024-08-16
  • A connection method of lengthening the steel tube of concrete-filled double-skin circular steel tube by inner lining tube and threaded connection has been proposed. Taking the length, depth and position of the thread as the basic parameters, 12 concrete-filled double-skin circular steel tube connected by thread through inner lining tube were designed, and the axial compression tests were carried out. By comparing specimens connected by thread with the ordinary specimens and welded specimens, the axial compressive loading-longitudinal compressive displacement curves, axial compressive loading-strain of steel tube curves and failure mode of the specimens were analyzed, and the effects of different parameters on the axial compressive bearing capacity and stiffness of the specimens were studied. The results showed that the axial compressive loading-longitudinal compressive displacement curves of the specimen could be divided into linear elastic stage, elasto-plastic stage, yield-strengthening stage and descending stage within the range of parameters studied. The bearing capacity and stiffness of the specimens connected by thread through inner lining tube were no worse than those of the ordinary specimen or the welded specimens. The bearing capacity and stiffness of the specimens increased with the increase of thread length, and bearing capacity and stiffness of the specimens connected at end section by thread through inner lining tube were higher than those of the specimens connected at middle section by thread through inner lining tube. The calculation method of the axial compressive bearing capacity of concrete-filled double-skin circular steel tube connected by thread through inner lining tube were suggested.
  • [1]
    WEI S, MAU S T, VIPULANANDAN C. Performance of new sandwich tube under axial loading: analysis[J]. Journal of Structural Engineering, ASCE, 1995, 121 (12): 1815-1821.
    [2]
    ZHAO X L, GRZEBIETA R H, UKUR A, et al. Tests of concrete-filled double skin (SHS outer and CHS inner) composite stub columns[J]. Advances in Steel Structures (ICASS '02), 2002, I (2): 567-574.
    [3]
    王文达, 张超峰, 王景玄, 等. 圆锥形中空夹层钢管混凝土轴压短柱受力机理分析[J]. 建筑科学与工程学报, 2019, 36 (3): 37-45.
    [4]
    陶忠, 于清. 新型组合结构柱的性能研究[J]. 建筑钢结构进展, 2006 (5): 17-29.
    [5]
    李龙仲, 张燎军, 张汉云. 节点连接方式对钢管混凝土结构性能的影响研究[J]. 水电能源科学, 2012, 30 (1): 165-169.
    [6]
    DAN G, YAO J Z, XU H Z, et.al. Seismic performance of concrete-filled steel tubular column connections using blind bolts[J]. Journal of Constructional Steel Research, 2023, 207, 107947.
    [7]
    DAN G, ZE X L, TAO Z, et al. Axial compressive behaviour of circular concrete-filled steel tubular stub columns with an inner bamboo culm[J]. Structures, 2020, 26: 156-168.
    [8]
    AHMED M M Z, ELSAYED S M M. Microstructure, crystallographic texture, and mechanical properties of friction stir welded mild steel for shipbuilding applications[J]. Materials, 2022, 15 (8), 2905.
    [9]
    余刘文, 上官明志. 綦江垮桥的背后[EB/OL]. (1999-01-15). http://www.peopledaily.com.cn/item/caihongqiao/a116.html.
    [10]
    CHEN J, YAN W, SU Y P. Concrete filled steel tube grouting sleeve connection device design and its application[J]. Applied Mechanics & Materials, 2014, 18 (3): 20-27.
    [11]
    武立伟, 韩旭, 陈海彬. 不同连接形式下圆钢管混凝土构件受弯性能研究[J].建筑结构学报, 2020, 41 (增刊1): 171-178.
    [12]
    任宏伟. 钢管混凝土灌浆套筒连接装置力学性能研究[J]. 科技资讯, 2017, 15 (2): 59-60.
    [13]
    陈海彬, 武立伟, 苏幼坡. 钢管灌浆套筒连接受拉性能的试验研究[J].世界地震工程, 2016, 32 (2): 18-24.
    [14]
    任宏伟, 陈建伟, 王宁. 钢管混凝土灌浆套筒连接装置有限元分析[J]. 河北联合大学学报(自然科学版), 2015, 37 (4): 108-112.
    [15]
    MENDLI A, KERDAL D, ABIDELAH A. Analysis of the behaviour of cover-plate stainless steel bolted connections[J]. Journal of Constructional Steel Research, 2022, 190, 107125.
    [16]
    WANG J, CHEN J. Influence of connection mode on axial tensile behavior of concrete-filled circular steel tubular members with internal lattice angle steel[J] Structures, 2019, 40 (11): 354-361.
    [17]
    刘学春, 和心宁, 商子轩. 装配式钢管混凝土柱柱连接方式: CN106759947A[P]. 2017-05-31.
    [18]
    全国螺纹标准化技术委员会.普通螺纹基本牙型: GB/T 192—2003[S]. 北京: 中国标准出版社, 2003.
    [19]
    中国土木工程学会.中空夹层钢管混凝土结构技术规程: T/CCES 7—2020.[S]. 北京: 中国建筑工业出版社, 2020.
    [20]
    陶忠, 于清. 新型组合结构柱:试验, 理论与方法[M]. 北京: 科学出版社, 2006.
    [21]
    HUANG H. Performance analysis of hollow sandwich concrete filled steel tubular short columns[J] Structures, 2016, 25 (4): 81-82.
    [22]
    YAN X F, ZHAO Y G. Compressive strength of axially loaded circular concrete-filled double-skin steel tubular short columns[J]. Journal of Constructional Steel Research, 2020, 170: 106-114.
    [23]
    TAO Z, HAN L H, ZHAO X L. Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns[J]. Journal of Constructional Steel Research, 2004, 60 (8): 1129-1158.
    [24]
    European Committee for Standardization.Design of composite steel and concrete structures-part1-1: general rules and rules for buildings: Eurocode 4:EN 1994-1-1[S]. Brussels: ECS, 2004.
    [25]
    American Institute of Steel Construction.Specification for structural steel buildings: ANSI/AISC 360-16[S]. Chicago: AISC, 2016.
    [26]
    中华人民共和国住房和城乡建设部.钢管混凝土结构技术规范: GB 50936—2014[S].北京:中国建筑工业出版社, 2014.
  • Relative Articles

    [1]YANG Chunxia, CHEN Tao, ZHANG Yongtao, WAN Peng, WU Jun. Automatic Identification of Modal Parameters of Wind Turbine Towers Under Harmonic Excitation[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(4): 134-141. doi: 10.3724/j.gyjzG23080713
    [2]GONG Fuyuan, HUANG Zhe, PAN Zuanfeng, ZHAO Yuxi, ZENG Bin. Multi-Physics and Multi-Scale Analysis of Prestress Loss and Deflection in Large-Scale Structures Under the Influence of Environmental Humidity[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 21-30. doi: 10.3724/j.gyjzG24090902
    [3]HUO Linsheng, LI Hongnan, YANG Zhuodong, ZHOU Jing. Research Advances of Intelligent Detection and Monitoring Techniques for Loosening of Steel Structure Bolted Connections[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 10-17. doi: 10.13204/j.gyjzG23080112
    [4]WANG Ling, YANG Jianping, GUO Xiaohua. Experiments of Determining Steel Grades by Nondestructive Inspection of Leeb Hardness[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 195-199,194. doi: 10.13204/j.gyjzG21101901
    [5]LI Hongyi, SHAO Weiwei, ZHU Zhanlong, YANG Weijun. Quantitative Damage Identification of Frame Structure Based on Wavelet Packet Energy Curvature Difference Under Environmental Excitation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 78-83. doi: 10.13204/j.gyjzG21112501
    [6]LIU Yang, SHAO Zhiwei, ZHANG Huijie, ZHAO Weitao, ZHANG Lei, CHA Xiaoxiong. RESEARCH ON NONDESTRUCTIVE TESTING OF CFST BY ULTRASONIC TOMOGRAPHY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 189-200. doi: 10.13204/j.gyjzG21020313
    [7]QU Ming, SHAO Zhiwei, ZHAO Weitao, CHA Xiaoxiong. RESEARCH ON NONDESTRUCTIVE TESTING OF GROUTING SLEEVE MEMBERS BY ULTRASONIC TOMOGRAPHY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 207-215. doi: 10.13204/j.gyjzG21020316
    [8]HU Weibing, YANG Jia, WANG Long, HOU Yanfang. STUDY ON DAMAGE DETECTION AND QUANTIFICATION OF ANCIENT BUILDING TIMBER STRUCTURES BASED ON LAMINATION THEORY AND BP NEURAL NETWORKS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 71-77,111. doi: 10.13204/j.gyjzG20020501
    [10]Hu Juan, Song Yifan, Sun Xiaoyi. DESIGN AND CONSTRUCTION CONTROL OF THE SPECIAL-SHAPED CAP SUPPORT FOR THE CAST-IN-PLACE LONG SPAN SELF-ANCHORED ARCH BRIDGE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 85-89. doi: 10.13204/j.gyjz201406020
    [11]Mao Lisheng, Wu Jiaye, Huang Botai. STUDY ON THE IMPACT OF CONCRETE CRACK SURFACE PRESSURE ON THE DEPTH TEST RESULTS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 146-149. doi: 10.13204/j.gyjz201306030
    [12]Guo Liqun, Li Anlu, Peng Xingqian. THE RESEARCH ON RAMMED-EARTH MATERIAL COMPRESSIVE STRENGTH NONDESTRUCTIVE TESTING FOR FUJIAN TULOU(EARTH-BUILDING)[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 167-172. doi: 10.13204/j.gyjz201312031
    [13]Gan Lin, Li Hailong. COMPARATIVE STUDY ON MODAL PARAMETER IDENTIFICATION TIME DOMAIN METHODS FOR FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 29-33,23. doi: 10.13204/j.gyjz201308006
    [14]LüJiangen, Wang Ronghui. DETERIORATION EXAMINATION AND REINFORCEMENT OF CFST TIED ARCH BRIDGE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 158-161. doi: 10.13204/j.gyjz201208031
    [15]Liu Xiang, Gao Zhenning, Li Hai. MODAL ANALYSIS OF MW GRADE WIND GENERATOR TOWER[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(2): 62-65. doi: 10.13204/j.gyjz201202014
    [16]Sui Lili, Quan Xinrui, Xing Feng, Zhang Hongyuan. STATE-OF-THE-ART OF RESEARCH ON DURABILITY OF POST-TENSIONED CONCRETE BRIDGES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 105-111. doi: 10.13204/j.gyjz201101025
    [17]Xu Shidai, Wang Fengquan. MODE PARAMETER IDENTIFICATION OF ENGINEERING STRUCTURE BASED ON ARMA MODEL[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 20-22. doi: 10.13204/j.gyjz200705005
    [18]Wang Gang, Yao Qianfeng. STUDY ON MODAL IDENTIFICATION OF FRAME STRUCTURE UNDER AMBIENT EXCITATION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(12): 45-47. doi: 10.13204/j.gyjz200412012
  • Cited by

    Periodical cited type(1)

    1. 张方圆,亓兴军,黄岩,张炜. 基于模态柔度的损伤连续梁桥虚拟荷载试验方法研究. 河北工业科技. 2024(06): 434-442 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.0 %FULLTEXT: 7.0 %META: 93.0 %META: 93.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.8 %其他: 12.8 %China: 0.7 %China: 0.7 %三门峡: 1.0 %三门峡: 1.0 %上海: 2.8 %上海: 2.8 %信阳: 0.3 %信阳: 0.3 %北京: 4.2 %北京: 4.2 %南京: 4.5 %南京: 4.5 %厦门: 2.1 %厦门: 2.1 %台州: 0.3 %台州: 0.3 %合肥: 0.3 %合肥: 0.3 %天津: 1.7 %天津: 1.7 %太原: 0.3 %太原: 0.3 %威海: 0.3 %威海: 0.3 %安康: 0.3 %安康: 0.3 %常德: 1.0 %常德: 1.0 %廊坊: 0.7 %廊坊: 0.7 %张家口: 1.4 %张家口: 1.4 %徐州: 0.7 %徐州: 0.7 %德罕: 1.0 %德罕: 1.0 %成都: 0.3 %成都: 0.3 %昆明: 1.4 %昆明: 1.4 %杭州: 1.0 %杭州: 1.0 %桂林: 0.7 %桂林: 0.7 %武汉: 1.0 %武汉: 1.0 %江门: 4.2 %江门: 4.2 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.7 %济南: 0.7 %温州: 0.7 %温州: 0.7 %漯河: 1.7 %漯河: 1.7 %珠海: 1.0 %珠海: 1.0 %石家庄: 0.3 %石家庄: 0.3 %福州: 1.0 %福州: 1.0 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 36.0 %芒廷维尤: 36.0 %芝加哥: 0.3 %芝加哥: 0.3 %衡阳: 0.3 %衡阳: 0.3 %西宁: 7.3 %西宁: 7.3 %运城: 1.7 %运城: 1.7 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %银川: 0.3 %银川: 0.3 %长春: 0.3 %长春: 0.3 %长沙: 1.0 %长沙: 1.0 %其他China三门峡上海信阳北京南京厦门台州合肥天津太原威海安康常德廊坊张家口徐州德罕成都昆明杭州桂林武汉江门洛阳济南温州漯河珠海石家庄福州绵阳芒廷维尤芝加哥衡阳西宁运城郑州重庆银川长春长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (69) PDF downloads(3) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return