Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Zhao Ruofan, Qi Xingjun, Guo Dongmei, Yang Hongchao, Qi Sheng. Research on Nondestructive Testing and Evaluation of Stiffness of Stone Arch Bridges Based on Modal Testing[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 223-229. doi: 10.3724/j.gyjzG23051108
Citation: LI Xinjie, WANG Weiyong. Research on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubular Columns Stiffened by Perforated Steel Plates Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 1-12. doi: 10.3724/j.gyjzG23071702

Research on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubular Columns Stiffened by Perforated Steel Plates Under Axial Compression

doi: 10.3724/j.gyjzG23071702
  • Received Date: 2023-07-14
    Available Online: 2024-08-16
  • The mechanical properties of concrete-filled double-skin steel tubular columns stiffened with perforated steel plates was studied. The finite element model was established by ABAQUS software. On the basis of verifying the reliability of the model, the load-displacement curve, stress distribution, failure mode and parameter analysis of the members were carried out. Furthermore, the design method of bearing capacity of concrete-filled double-skin steel tubular columns stiffened by perforated steel plates under axial compression was proposed. The results showed that the perforated steel plate could enhance the joint force and restraint effect of steel tube and concrete. The recommended values of each parameter of the component should be: steel grade Q355, concrete strength grade C60, opening diameter 35 mm, opening spacing 15 mm, stiffened steel plate thickness 5 mm, and the number of stiffened steel plates should be 4, at this time, the bearing capacity could be increased by 9.6% compared with the concrete-filled double-skin steel tube column, and the bearing capacity is only reduced by 1.9% compared with the bearing capacity of the concrete-filled double-skin steel tube column stiffened with steel plates. Therefore, the opening could save steel and ensure a certain bearing capacity. By adding the contribution of the bearing capacity of the stiffened steel plate to the calculation formula in the specification, and considering the influence of the opening diameter on the bearing capacity and the effect of the steel plate on the improvement of the concrete strength, the proposed design method of axial bearing capacity could safely predict its axial bearing capacity.
  • [1]
    蔡绍怀. 现代钢管混凝土结构.[M].2版.北京:人民交通出版社, 2007.
    [2]
    陶忠, 于清.新型组合结构柱:试验、理论与方法[M].北京:科学出版社, 2006.
    [3]
    HAN L H, REN Q X, LI W. Tests on stub stainless steel-concrete-carbon steel double-skin tubular (DST) columns[J]. Journal of Constructional Steel Research, 2011, 67(3): 437-452.
    [4]
    HASAN H G, EKMEKYAPAR T. Bond-slip behavior of concrete filled double skin steel tubular (CFDST) columns[J]. Marine Structures, 2021, 79: 1-18.
    [5]
    LIAO F Y, HAN L H, TAO Z. Behavior of composite joints with concrete encased CFST columns under cyclic loading: Experiments[J]. Engineering Structures, 2014, 59(2): 745-764.
    [6]
    中国电力企业联合会.输电线路中空夹层钢管混凝土杆塔技术规范:T/CEC 185—2018[S]. 北京: 中国电力出版社, 2018.
    [7]
    中国土木工程学会.中空夹层钢管混凝土结构技术规程: T/CCES 7—2020[S].北京:中国建筑工业出版社, 2020.
    [8]
    谌扬宇, 宁寄慧, 张永鑫, 等.中空夹层圆钢管混凝土短柱的压弯承载力计算法[J].建筑钢结构进展, 2021, 23(12): 85-93.
    [9]
    黄宏, 戚本豪, 王慧智, 等.大空心率圆中空夹层钢管超高性能混凝土短柱轴压力学性能研究[J].建筑钢结构进展, 2022, 24(4):24-31

    , 46.
    [10]
    刘永健, 李慧, 张宁, 等.PBL加劲型矩形钢管混凝土界面粘结-滑移性能[J].建筑科学与工程学报, 2015, 32(5):1-7.
    [11]
    TAO Z, HAN L H, ZHAO X L. Behavior of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns[J]. Journal of Constructional Steel Research, 2004, 60(8): 1129-1158.
    [12]
    UENAKA K. CFDST stub columns having outer circular and inner square sections under compression[J]. Journal of Constructional Steel Research, 2016, 120(4): 1-7.
    [13]
    WANG F C, HAN L H, LI W. Analytical behavior of CFDST stub columns with external stainless steel tubes under axial compression[J]. Thin-Walled Structures, 2018, 127(5): 756-768.
    [14]
    王先铁, 庞亚红, 高欢, 等.内配格构式钢骨钢管混凝土构件的抗弯性能[J].土木与环境工程学报(中英文), 2022, 44(5):165-176.
    [15]
    黄宏, 张安哥, 李毅, 等.带肋方钢管混凝土轴压短柱试验研究及有限元分析[J].建筑结构学报, 2011, 32(2):75-82.
    [16]
    TAO Z, HAN L H, WANG Z B. Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural(HSS) stub columns[J].Journal of Constructional Steel Research, 2005, 61(7): 962-983.
    [17]
    孙焱焱, 王振波, 盛超, 等.带肋方钢管混凝土短柱承载力及延性研究[J].应用力学学报, 2017, 34(1):136-141

    , 202.
    [18]
    梁危, 董江峰, 王清远.带肋中空夹层方钢管混凝土柱轴压性能的试验研究[J].工程科学与技术, 2018, 50(6):132-140.
    [19]
    姜磊, 刘永健, 张俊光.开孔钢板加劲型方钢管混凝土长柱轴压性能试验研究[J].建筑结构学报, 2016, 37(5):122-128.
    [20]
    李肖, 张元植.设平板加劲肋矩形钢管混凝土柱静载下ABAQUS本构模型的研究[J]建筑钢结构进展, 2021, 23(8):84-96.
    [21]
    钟善桐.钢管混凝土结构[M].北京:清华大学出版社, 2003.
    [22]
    赵晖, 张颖, 王蕊.内钢板中空方形钢管混凝土叠合柱轴压力学性能研究[J].建筑结构学报, 2022, 43(6):53-62

    , 141.
    [23]
    中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010—2010(2015版)[S].北京:中国建筑工业出版社, 2016.
    [24]
    刘威. 钢管混凝土局部受压时的工作机理研究[D].福州:福州大学, 2005.
    [25]
    王宇航, 曹锋, 周绪红, 等.风电混合塔筒中空夹层钢管混凝土转接结构轴压性能试验研究[J].建筑钢结构进展, 2023, 25(4):25-36.
    [26]
    WANG H, GUO Y H, BAI Y T, et al. Experimental and numerical study on the stability capacity of Q690 high-strength circular steel tubes under axial compression[J]. International Journal of Steel Structures, 2017, 17(3): 843-861.
    [27]
    冯鹏, 强翰霖, 叶列平. 材料、构件、结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3): 36-46.
    [28]
    韩林海.钢管混凝土结构:理论与实践[M].3版.北京:科学版社, 2016.
  • Relative Articles

    [1]YANG Chunxia, CHEN Tao, ZHANG Yongtao, WAN Peng, WU Jun. Automatic Identification of Modal Parameters of Wind Turbine Towers Under Harmonic Excitation[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(4): 134-141. doi: 10.3724/j.gyjzG23080713
    [2]GONG Fuyuan, HUANG Zhe, PAN Zuanfeng, ZHAO Yuxi, ZENG Bin. Multi-Physics and Multi-Scale Analysis of Prestress Loss and Deflection in Large-Scale Structures Under the Influence of Environmental Humidity[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 21-30. doi: 10.3724/j.gyjzG24090902
    [3]HUO Linsheng, LI Hongnan, YANG Zhuodong, ZHOU Jing. Research Advances of Intelligent Detection and Monitoring Techniques for Loosening of Steel Structure Bolted Connections[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 10-17. doi: 10.13204/j.gyjzG23080112
    [4]WANG Ling, YANG Jianping, GUO Xiaohua. Experiments of Determining Steel Grades by Nondestructive Inspection of Leeb Hardness[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 195-199,194. doi: 10.13204/j.gyjzG21101901
    [5]LI Hongyi, SHAO Weiwei, ZHU Zhanlong, YANG Weijun. Quantitative Damage Identification of Frame Structure Based on Wavelet Packet Energy Curvature Difference Under Environmental Excitation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 78-83. doi: 10.13204/j.gyjzG21112501
    [6]LIU Yang, SHAO Zhiwei, ZHANG Huijie, ZHAO Weitao, ZHANG Lei, CHA Xiaoxiong. RESEARCH ON NONDESTRUCTIVE TESTING OF CFST BY ULTRASONIC TOMOGRAPHY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 189-200. doi: 10.13204/j.gyjzG21020313
    [7]QU Ming, SHAO Zhiwei, ZHAO Weitao, CHA Xiaoxiong. RESEARCH ON NONDESTRUCTIVE TESTING OF GROUTING SLEEVE MEMBERS BY ULTRASONIC TOMOGRAPHY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 207-215. doi: 10.13204/j.gyjzG21020316
    [8]HU Weibing, YANG Jia, WANG Long, HOU Yanfang. STUDY ON DAMAGE DETECTION AND QUANTIFICATION OF ANCIENT BUILDING TIMBER STRUCTURES BASED ON LAMINATION THEORY AND BP NEURAL NETWORKS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 71-77,111. doi: 10.13204/j.gyjzG20020501
    [10]Hu Juan, Song Yifan, Sun Xiaoyi. DESIGN AND CONSTRUCTION CONTROL OF THE SPECIAL-SHAPED CAP SUPPORT FOR THE CAST-IN-PLACE LONG SPAN SELF-ANCHORED ARCH BRIDGE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 85-89. doi: 10.13204/j.gyjz201406020
    [11]Mao Lisheng, Wu Jiaye, Huang Botai. STUDY ON THE IMPACT OF CONCRETE CRACK SURFACE PRESSURE ON THE DEPTH TEST RESULTS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 146-149. doi: 10.13204/j.gyjz201306030
    [12]Guo Liqun, Li Anlu, Peng Xingqian. THE RESEARCH ON RAMMED-EARTH MATERIAL COMPRESSIVE STRENGTH NONDESTRUCTIVE TESTING FOR FUJIAN TULOU(EARTH-BUILDING)[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 167-172. doi: 10.13204/j.gyjz201312031
    [13]Gan Lin, Li Hailong. COMPARATIVE STUDY ON MODAL PARAMETER IDENTIFICATION TIME DOMAIN METHODS FOR FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 29-33,23. doi: 10.13204/j.gyjz201308006
    [14]LüJiangen, Wang Ronghui. DETERIORATION EXAMINATION AND REINFORCEMENT OF CFST TIED ARCH BRIDGE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 158-161. doi: 10.13204/j.gyjz201208031
    [15]Liu Xiang, Gao Zhenning, Li Hai. MODAL ANALYSIS OF MW GRADE WIND GENERATOR TOWER[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(2): 62-65. doi: 10.13204/j.gyjz201202014
    [16]Sui Lili, Quan Xinrui, Xing Feng, Zhang Hongyuan. STATE-OF-THE-ART OF RESEARCH ON DURABILITY OF POST-TENSIONED CONCRETE BRIDGES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 105-111. doi: 10.13204/j.gyjz201101025
    [17]Xu Shidai, Wang Fengquan. MODE PARAMETER IDENTIFICATION OF ENGINEERING STRUCTURE BASED ON ARMA MODEL[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 20-22. doi: 10.13204/j.gyjz200705005
    [18]Wang Gang, Yao Qianfeng. STUDY ON MODAL IDENTIFICATION OF FRAME STRUCTURE UNDER AMBIENT EXCITATION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(12): 45-47. doi: 10.13204/j.gyjz200412012
  • Cited by

    Periodical cited type(1)

    1. 张方圆,亓兴军,黄岩,张炜. 基于模态柔度的损伤连续梁桥虚拟荷载试验方法研究. 河北工业科技. 2024(06): 434-442 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.0 %FULLTEXT: 7.0 %META: 93.0 %META: 93.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.8 %其他: 12.8 %China: 0.7 %China: 0.7 %三门峡: 1.0 %三门峡: 1.0 %上海: 2.8 %上海: 2.8 %信阳: 0.3 %信阳: 0.3 %北京: 4.2 %北京: 4.2 %南京: 4.5 %南京: 4.5 %厦门: 2.1 %厦门: 2.1 %台州: 0.3 %台州: 0.3 %合肥: 0.3 %合肥: 0.3 %天津: 1.7 %天津: 1.7 %太原: 0.3 %太原: 0.3 %威海: 0.3 %威海: 0.3 %安康: 0.3 %安康: 0.3 %常德: 1.0 %常德: 1.0 %廊坊: 0.7 %廊坊: 0.7 %张家口: 1.4 %张家口: 1.4 %徐州: 0.7 %徐州: 0.7 %德罕: 1.0 %德罕: 1.0 %成都: 0.3 %成都: 0.3 %昆明: 1.4 %昆明: 1.4 %杭州: 1.0 %杭州: 1.0 %桂林: 0.7 %桂林: 0.7 %武汉: 1.0 %武汉: 1.0 %江门: 4.2 %江门: 4.2 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.7 %济南: 0.7 %温州: 0.7 %温州: 0.7 %漯河: 1.7 %漯河: 1.7 %珠海: 1.0 %珠海: 1.0 %石家庄: 0.3 %石家庄: 0.3 %福州: 1.0 %福州: 1.0 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 36.0 %芒廷维尤: 36.0 %芝加哥: 0.3 %芝加哥: 0.3 %衡阳: 0.3 %衡阳: 0.3 %西宁: 7.3 %西宁: 7.3 %运城: 1.7 %运城: 1.7 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %银川: 0.3 %银川: 0.3 %长春: 0.3 %长春: 0.3 %长沙: 1.0 %长沙: 1.0 %其他China三门峡上海信阳北京南京厦门台州合肥天津太原威海安康常德廊坊张家口徐州德罕成都昆明杭州桂林武汉江门洛阳济南温州漯河珠海石家庄福州绵阳芒廷维尤芝加哥衡阳西宁运城郑州重庆银川长春长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (129) PDF downloads(11) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return