Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CHEN, Gong, XIE. MICRO RENEWAL OF PUBLIC SPACE IN OLD COMMUNITIES BASED ON SHARING CONCEPT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 80-83,90. doi: 10.13204/j.gyjz202001014
Citation: HE Zhengwei, CHEN Yuhan, GU Jinben, TAO Yi, DOU Yafen. Research on Mechanical Properties of GFRP Tube Confined Biochar Concrete Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 149-159. doi: 10.3724/j.gyjzG24032002

Research on Mechanical Properties of GFRP Tube Confined Biochar Concrete Under Axial Compression

doi: 10.3724/j.gyjzG24032002
  • Received Date: 2023-03-20
    Available Online: 2024-06-24
  • Biochar can be served as a lightweight aggregate material and its partial incorporation into concrete can realize internal curing and filling effects, thereby enhancing the mechanical properties of cementitious materials. It represents a potential carbon capture and sequestration technique. However, due to the high porosity of biochar’s microstructure, biochar concrete faces challenges such as low strength, poor corrosion resistance, and instability. This study proposed the use of Glass Fiber Reinforced Polymer (GFRP) tubes to confine biochar concrete, and the axial compression tests on GFRP tube-confined biochar concrete were performed, with design parameters including GFRP tube thickness (number of layers), biochar content, and biochar water absorption rate. Emphasis was placed on analyzing the axial stress-strain curves, circumferential strain-axial strain curves, yielding stress, ultimate strain, and circumferential fracture strain of each specimen. The results indicated that, under the premise of same biochar content and water absorption rate, the ultimate compressive strength of GFRP-confined biochar concrete specimens increased by 490.4% to 563.3% compared to that of unconfined specimens. The ultimate strain of confined specimens also significantly increased, and the yielding stress and strain of the confined specimens were much greater then those of unconfined specimens, indicating that GFRP confinement significantly improves the bearing capacity and deformation performance of biochar concrete. With increasing biochar content, the peak stress of confined specimens decreased while the axial ultimate strain increased. On the other hand, an increase in biochar water absorption rate led to an increase in the yielding load of confined specimens but a decrease in the ultimate strain. Additionally, an increase in the number of layers of GFRP tubes enhanced the secondary stiffness of confined specimens. The circumferential strain-axial strain curve exhibited no obvious transition point between the elastic segment and the linear segment, indicating that three was a good synergy between FRP tubes and biochar concrete.
  • [1]
    吴维, 卢玉南, 覃英宏, 等. 生物炭混凝土生命周期CO2排放评价[J]. 建筑科学与工程学报, 2023, 40(3): 20-29.
    [2]
    ANDRES R J, MARLAND G, FUNG I, et al. A 1°×1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950—1990[J]. Global Biogeochemical Cycles, 1996, 10(3):419-429.
    [3]
    齐冬有, 张标, 罗宁. 水泥工业碳减排的技术路径[EB/OL].(2021-06-08) [2023-03-29]. https://www.ccement.com/news/content/13050268544005001.html.
    [4]
    马忠诚, 汪澜. 水泥工业CO2减排及利用技术进展[J]. 材料导报, 2011,25(19):150-154.
    [5]
    SCRIVENER K L, JOHN V M, GARTNER E M. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry[J]. Cement and Concrete Research, 2018, 114:2-26.
    [6]
    HIGUCHI T, MORIOKA M, YOSHIOKA I, et al. Development of a new ecological concrete with CO2 emissions below zero[J]. Construction and Building Materials, 2014, 67: 338-343.
    [7]
    李金文, 顾凯, 唐朝生, 等. 生物炭对土体物理化学性质影响的研究进展[J]. 浙江大学学报(工学版), 2018, 52(1): 192-206.
    [8]
    AKHTAR A, SARMAH A K. Novel biochar-concrete composites: manufacturing, characterization and evaluation of the mechanical properties[J]. Science of the Total Environment, 2018, 616-617: 408-416.
    [9]
    GUPTA S, KUA H W. Factors determining the potential of biochar as a carbon capturing and sequestering construction material: critical review[J]. Journal of Materials in Civil Engineering, 2017, 29(9), 04017086.
    [10]
    窦雅芬. FRP约束生物炭骨料混凝土轴压力学性能研究[D]. 西安: 西安建筑科技大学, 2023.
    [11]
    KÖROĞLU M A, CEYLAN M, ARSLAN M H, et al. Estimation of flexural capacity of quadrilateral FRP-confined RC columns using combined artificial neural network[J]. Engineering Structures, 2012, 42:23-32.
    [12]
    WU Y F, JIANG J F. Effective strain of FRP for confined circular concrete columns[J]. Composite Structures, 2013, 95(1): 479-491.
    [13]
    MONTI G, NISTICO N. Square and rectangular concrete columns confined by CFRP: Experimental and numerical investigation[J]. Mechanics of Composite Materials, 2008, 44: 289-308.
    [14]
    MIRMIRAN A, SHAHAWY M. A new concrete-filled hollow FRP composite column[J]. Composites Part B Engineering, 1996, 27(3/4): 263-268.
    [15]
    MIRMIRAN A, SHAHAWY M. Closure to "behavior of concrete columns confined by fiber composites" by amir mirmiran and mohsen shahawy[J]. Journal of Structural Engineering, 1998, 124(9): 1095-1095.
    [16]
    SAAFI M, TOUTANJI H A, LI Z. Behavior of concrete columns confined with fiber reinforced polymer tubes[J]. ACI Structural Journal, 1999, 96(4): 500-509.
    [17]
    SAMAAN M, MIRMIRAN A, SHAHAWY M. Model of concrete confined by fiber composites[J]. Journal of Structural Engineering, 1998, 124(9): 1025-1031.
    [18]
    中华人民共和国住房和城乡建设部.普通混凝土用砂、石质量及检验方法标准: JGJ 52—2006[S].北京:中国建筑工业出版社, 2006.
    [19]
    叶扬天. 生物质烘焙特型及动力学研究[D].南京:南京师范大学, 2019.
    [20]
    敬登虎, 曹双寅. FRP约束混凝土极限状态下破坏机理分析[J]. 特种结构, 2007(2): 93-95.
    [21]
    毛志杰, 黄靓, 吴越, 等. 纤维增强复合材料约束尾矿粉地聚物再生混凝土轴压性能研究[J]. 工业建筑, 2023, 53(6): 209-217.
    [22]
    FENG P, CHENG S, BAI Y, et al. Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression[J]. Composite Structures, 2015, 123: 312-24.
    [23]
    LAM L, TENG J. Design-oriented stress-strain model for FRP-confined concrete[J]. Construction and Building Materials, 2003, 17: 471-489.
    [24]
    NISTICO N, PALLINI F, ROUSAKIS T, et al. Peak strength and ultimate strain prediction for FRP confined square and circular concrete sections[J]. Composites Part B, 2014, 67(12): 543-554.
    [25]
    MIRMIRAN A, SINGHVI A, MONTI G. FRP-confined concrete model[J]. Journal of Composites for Construction, 1999, 3(1): 62-65.
    [26]
    JIANG T, TENG J G. Analysis-oriented stress-strain models for FRP-confined concrete[J]. Engineering Structures, 2007, 29(11): 2968-2986.
    [27]
    RICHART F E, BRANDTZG A, BROWN R L. Failure of plain and spirally reinforced concrete in compression[J/OL]. Engineering, Materials Science, 1929. https://api.semanticscholar.org/CorpusID:136940705.
    [28]
    SAMAAN, MIRMIRAN A, SHAHAWY M. Model of concrete confined by fiber composites[J]. Journal of Structural Engineering, 1998, 124 (9): 1025-1031.
    [29]
    TOUTANJI H A. Stress-strain characteristics of concrete columns externally confined with advanced fiber-composite sheets[J]. ACI Materials Journal, 1999,96 (3): 397-404.
    [30]
    XIAO Y, WU H. Compressive behavior of concrete confined by carbon fiber composite jackets[J]. Journal of Materials in Civil Engineering, 2000(2): 12:139-146.
    [31]
    MANDER J A B, PRIESTLEY M J N.Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826.
    [32]
    吴刚, 吕志涛. FRP约束混凝土圆柱无软化段时的应力-应变关系研究[J]. 建筑结构学报, 2003(5): 1-9.
    [33]
    FARDIS M N. KHALILI H H. FRP-encased concrctc as a structural material[J]. Magazine of Concrete Research, 1982,34(121): 191-202.
    [34]
    MORAN D A, PANTELIDES C P. Damage-based stress-strain model for fiber-reinforced polymer-confined concrete[J]. Journal of Composites for Construction, 2005, 6(4): 233-240.
    [35]
    MARQUES S P C, MARQUES D C S C, LINS DA SILVA J, et al. Model for analysis of short columns of concrete confined by fiber-reinforced polymer[J]. Journal of Composites for Construction, 2004, 8(4): 332-340.
  • Relative Articles

    [1]XUE Qianming, HUANG Yuehao, SHANG Yongtao. Research on Micro-Renewal and Optimization Design of Lanzhou Railway Station Area Under Catalyst Linkage[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 86-94. doi: 10.3724/j.gyjzG23060709
    [2]ZHANG Xia, ZHAO Xue, LIAO Zixiang. Application of Affordance Theory to the Community-Based Renewal of Industrial Relics and Strategies: Taking Wuhan City as an Example[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 45-53. doi: 10.13204/j.gyjzG23083006
    [3]JIN Liansheng, CHEN Chen. Protection and Renewal Strategies of Santaizi Worker’s Community in Shenyang from a Perspective of Community Co-Governance Systems[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 72-81. doi: 10.13204/j.gyjzG21012706
    [4]ZHANG Hongbo, YANG Yujia. Deconstructive Study on Public Space of Jinjiang Timber Cabin Village in Jilin Based on the Pattern Language[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 64-73. doi: 10.13204/j.gyjzG22060804
    [5]REN Zhen, KOU Juntao, WANG Yu, CHI Miaomiao. Research on the Regeneration Design of Industrial Remain Sites from the Perspective of Landscape Urbanism: A Case Study of the Old Brewery in Pingyuan County[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 17-22. doi: 10.13204/j.gyjzG22062304
    [6]CAO Ying, YANG Jinpeng, WANG Yu, ZHANG Nan. Protection and Reuse of Mining Heritage Based on Community Renewal: Taking the Zhongfu Mining Heritage in Jiaozuo as an Example[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 52-58. doi: 10.13204/j.gyjzG20102504
    [7]LYU Chang, WEI Chunyu. TAKING TIANHAN CULTURAL PARK AS AN EXAMPLE: RESEARCH ON THE CURRENT SITUATION AND DESIGN OF CONTEMPORARY VILLAGE MUSEUM[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 74-80. doi: 10.13204/j.gyjzg21022003
    [8]QIAO Zhi, JIA Xinxin, HUANG Jingfan, FAN Wenlu. STUDY ON THE AGING SPACE ACTIVATION AND FACILITIES RENEWAL OF XI'AN TEXTILE CITY INDUSTRIAL COMMUNITY FROM THE PERSPECTIVE OF COLLECTIVE MEMORY[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(2): 89-97. doi: 10.13204/j.gyjz202002013
    [9]CHEN Jing, HAO Xinyi, YANG Li. STUDY ON THE SPATIAL FORM OF SILO-CAVE VILLAGE IN THE WEST OF HENAN[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 8-12. doi: 10.13204/j.gyjz202005002
    [12]Deng Yuanyuan, Chang Jiang. MICRO SPATIAL COGNITIVE OF INHABITANT IN OLD COMMUNITY: THE INVESTIGATION FOR THE WORKER COMMUNITY OF THE 2ND MACHINERY PLANT IN JIAWANG DISTRICT,XUZHOU[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(05): 40-44.
    [13]Sun Jian, Zhao Lin. THE RENOVATION OF QINGDAO SMALL HARBOR[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(1): 156-159. doi: 10.13204/j.gyjz201301035
    [14]Wang Xixi, Chen Xingzhu. RESUSCITATION OF THE HEART OF CITY:RENOVATION OF LES HALLES,PARIS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(3): 56-59. doi: 10.13204/j.gyjz201203011
    [15]Wang Lu, Xu Jia, Tuo Wanyong, Li Yuhua. ANALYSIS OF PLANNING AND SIGHT DESIGN FOR GANGHUA GARDEN[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 45-48. doi: 10.13204/j.gyjz201211010
    [16]Dong Jie, Su Jihong, Wang Shiyang, Zou Dan. CONSTRUCTION STRATEGY OF CONTEMPOARY INDUSTRIAL PARKS BASED ON VITALITY MOULDING[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(8): 4-7. doi: 10.13204/j.gyjz201108002
    [17]He Wei. RESEARCH AND INTEGRATION DESIGN OF OLD AND NEW CAMPUS PUBLIC SPACE IN HUNAN UNIVERSITY[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(5): 47-49. doi: 10.13204/j.gyjz201105011
    [18]Wang Yi, Chen Jing. THE EXPLORATION AND PRACTICE OF INDUSTRIAL PARKS UNDER THE CONCEPTION OF SUSTAINABLE DEVELOPMENT[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(12): 37-40. doi: 10.13204/j.gyjz200812011
    [19]Shi Qi-lei. ARCHITECTURAL DESIGN OF COMPREHENSIVE MEDICAL BUILDING FOR THE PLAcS NO. 306 HOSPITAL[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 29-31. doi: 10.13204/j.gyjz200610009
    [20]Zhang Sanming, Wu Qian. RECONSTRUCTION DESIGN OF ACOUSTICAL ENVIRONMENT OF INTERIOR PUBLIC SPACE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(2): 31-33. doi: 10.13204/j.gyjz200602009
  • Cited by

    Periodical cited type(15)

    1. 高雅薇,孙伟,官卫华. 基于多主体治理视角的城市更新研究进展与展望. 现代城市研究. 2024(06): 1-7+45 .
    2. 余文志豪,孙靓,刘梦昭,姚彧之,蔡祎文. 基于空间激活的武汉保成路社区入口改造. 山西建筑. 2023(07): 39-42 .
    3. 王崎. 基于微更新的住区开放空间适老性研究进展及趋势. 低温建筑技术. 2023(04): 30-33 .
    4. 张思源. 老旧小区首层自发加建研究——以柳州机车车辆有限公司东社区为例. 城市建筑. 2023(22): 182-185 .
    5. 潘博,田从祥,王文斌. 基于“共享”理念下老旧社区公共空间更新探索——以荆州市荆州古城便河社区为例. 四川建材. 2022(02): 51-52+54 .
    6. 宋鹏波,孙涛,郑云峰. 基于UCD理念的老旧社区公共空间景观微改造创新设计研究——以武汉市武展社区为例. 中国勘察设计. 2022(09): 87-90 .
    7. 陈晓菲,冉圣林,马青松. 大街区视角下城镇老旧小区改造策略研究. 住区. 2022(04): 6-14 .
    8. 张恒瑜,张忠峰,赵红霞. 城市微更新背景下基于“共享”理念的老城区公共空间改造. 现代园艺. 2022(21): 95-97 .
    9. 陈明晨,李凯怡,何雪倩. 共享养老模式下老旧社区口袋公园的设计探析. 科学技术创新. 2022(36): 155-158 .
    10. 宁晓蕾. 共享理念下老旧社区公共空间微更新. 海峡科技与产业. 2022(12): 104-106 .
    11. 孟军. 社区微更新视角下南阳老旧社区体育设施优化配置研究. 体育风尚. 2021(02): 132-133 .
    12. 凌云. 社区更新中的可持续发展策略研究——以美国纽约为例. 建筑与文化. 2021(06): 58-59 .
    13. 黄芸璟,彭震宇. 基于城市闲置空间的智慧共享研究——以重庆市住宅空间为例. 国土资源信息化. 2021(04): 22-27+21 .
    14. 吴文勇. 垃圾分类背景下城市公共垃圾桶视觉设计研究. 包装工程. 2021(18): 287-291 .
    15. 李馨瞳. 西安市老旧社区微更新改造理念与策略研究. 绿色科技. 2020(18): 199-200+232 .

    Other cited types(40)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0305101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.0 %FULLTEXT: 19.0 %META: 80.1 %META: 80.1 %PDF: 0.9 %PDF: 0.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.4 %其他: 3.4 %其他: 1.2 %其他: 1.2 %China: 1.2 %China: 1.2 %Hong Kong, China: 0.9 %Hong Kong, China: 0.9 %[]: 0.6 %[]: 0.6 %上海: 2.8 %上海: 2.8 %东莞: 0.6 %东莞: 0.6 %北京: 8.9 %北京: 8.9 %南京: 1.2 %南京: 1.2 %南通: 0.3 %南通: 0.3 %台州: 0.6 %台州: 0.6 %合肥: 0.6 %合肥: 0.6 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 1.2 %大连: 1.2 %天津: 0.6 %天津: 0.6 %太原: 0.6 %太原: 0.6 %宿州: 0.3 %宿州: 0.3 %广州: 0.6 %广州: 0.6 %张家口: 0.9 %张家口: 0.9 %成都: 0.9 %成都: 0.9 %扬州: 0.6 %扬州: 0.6 %晋城: 0.3 %晋城: 0.3 %朝阳: 1.2 %朝阳: 1.2 %杭州: 3.7 %杭州: 3.7 %武汉: 1.2 %武汉: 1.2 %泰安: 0.3 %泰安: 0.3 %济南: 0.3 %济南: 0.3 %济宁: 0.3 %济宁: 0.3 %温州: 0.3 %温州: 0.3 %湖州: 0.9 %湖州: 0.9 %漯河: 1.2 %漯河: 1.2 %珠海: 0.3 %珠海: 0.3 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.9 %福州: 0.9 %芒廷维尤: 45.9 %芒廷维尤: 45.9 %荆州: 0.3 %荆州: 0.3 %菏泽: 0.3 %菏泽: 0.3 %衢州: 0.3 %衢州: 0.3 %西宁: 4.9 %西宁: 4.9 %贵阳: 0.3 %贵阳: 0.3 %运城: 2.8 %运城: 2.8 %邯郸: 0.3 %邯郸: 0.3 %郑州: 3.1 %郑州: 3.1 %重庆: 0.3 %重庆: 0.3 %镇江: 0.3 %镇江: 0.3 %长沙: 0.6 %长沙: 0.6 %阳泉: 0.6 %阳泉: 0.6 %其他其他ChinaHong Kong, China[]上海东莞北京南京南通台州合肥嘉兴大连天津太原宿州广州张家口成都扬州晋城朝阳杭州武汉泰安济南济宁温州湖州漯河珠海石家庄福州芒廷维尤荆州菏泽衢州西宁贵阳运城邯郸郑州重庆镇江长沙阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (66) PDF downloads(4) Cited by(55)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return