Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
FAN Lijun. Identification of Crack in Concrete Structures Based on MobileNetV2 of Lightweight Convolutional Network[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 231-236. doi: 10.13204/j.gyjzG23021618
Citation: FAN Lijun. Identification of Crack in Concrete Structures Based on MobileNetV2 of Lightweight Convolutional Network[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 231-236. doi: 10.13204/j.gyjzG23021618

Identification of Crack in Concrete Structures Based on MobileNetV2 of Lightweight Convolutional Network

doi: 10.13204/j.gyjzG23021618
  • Received Date: 2023-02-16
  • With the increase of service time of concrete structures, the generated cracks will continue to expand and may cause damage to the structure. Therefore, crack detection is of great significance for the health monitoring of concrete structures, but traditional ultrasonic and artificial vision-based detection methods can not quickly classify cracks. Based on MobileNetV2 lightweight convolutional network and TensorFlow deep learning framework, a prediction model for rapid identification and classification of concrete structure crack was established. Firstly, the data set was extracted and partitioned based on the pathlib method; secondly, data enhancement based on transfer learning expanded the data set; thirdly, based on the TensorFlow framework, Keras was used to build the pooling layer of the convolutional network; finally, a complete convolutional network architecture and obtained the results were obtained. The test results showed that the model converged, the prediction accuracy reached 0.997 5, and the training time was only 710 s. It could provide help for mobile equipment detection in the project site.
  • [1]
    ZHANG L, YANG F, ZHANG Y D, et al. Road crack detection using deep convolutional neural network[C]//IEEE International Conference on Image Processing (ICIP). 2016:3708-3712.
    [2]
    DUNG C V, ANH L D. Autonomous concrete crack detection using deep fully convolutional neural network[J]. Automation in Construction, 2019, 99:52-58.
    [3]
    鲍跃全,李惠. 人工智能时代的土木工程[J]. 土木工程学报, 2019, 52(5):1-11.
    [4]
    ZHAO J, LI L. Research on image classification algorithm based on convolutional neural Network-TensorFlow[J/OL]. Journal of Physics,2010[2022-08-11].https://iopscience.iop.org/article/10.1088/1742-6596/2083/3/032054.
    [5]
    GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018,77:354-377, 3.
    [6]
    HE T, LIU Y, YU Y, et al. Application of deep convolutional neural network on feature extraction and detection of wood defects Çaǧlar Flrat Özgenel:Concrete Crack Images for Classification[J/OL]. Measurement, 2020[2023-02-11]. https://doi.org/10.1016/j.measurement.2019.107357.
    [7]
    LI W, FIELD K G, MORGAN D. Automated defect analysis in electron microscopic images[J]. NPJ Computational Materials, 2018(4):1-9.
    [8]
    DONG Y, SU C, QIAO P, et al. Microstructural crack segmentation of three-dimensional concrete images based on deep convolutional neural networks[J/OL]. Construction and Building Materials, 2020[2022-08-11].https://doi.org/10.1016/j.conbuildmat.2020.119185.
    [9]
    DAS A K, LEUNG C K Y, WAN K T. Application of deep convolutional neural networks for automated and rapid identification and computation of crack statistics of thin cracks in strain hardening cementitious composites (SHCCs)[J/OL]. Cement and Concrete Composites, 2021[2022-08-11].https://doi.org/10.1016/j.cemconcomp.2021.104159.
    [10]
    REZAIE A, ACHANTA R, GODIO M, et al. Comparison of crack segmentation using digital image correlation measurements and deep learning[J/OL]. Construction and Building Materials, 2020[2022-08-11].https://doi.org/10.1016/j.conbuildmat.2020.120474.
    [11]
    OH B K, PARK H S, GLISIC B. Prediction of long-term strain in concrete structure using convolutional neural networks, air temperature and time stamp of measurements[J/OL]. Automation in Construction, 2021[2022-08-11].https://doi.org/10.1016/j.autcon.
    [12]
    KHODABANDEHLOU H, PEKCAN G, FADALI M S. Vibration-based structural condition assessment using convolution neural networks[J/OL]. Structural Control and Health Monitoring,2018[2018-12-13].https://doi.org/10.1002/stc.2308.
    [13]
    WANG L, KAWAGUCHI K, WANG P. Damaged ceiling detection and localization in large-span structures using convolutional neural networks[J/OL]. Automation in Construction,2020[2022-08-11].https://doi.org/10.1016/j.autcon.2020.103230.
    [14]
    KUMAR N, RATHEE M, CHANDRAN N, et al. CrypTFlow:Secure TensorFlow inference[C]//Proceedings of the IEEE Symposium on Security and Privacy. 2020:336-353.
    [15]
    HOWARD A G, ZHU M, CHEN B, et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2022-08-11]. http://arxiv.org/abs/1704.04861.
    [16]
    ÖZGENEL F, GÖNENÇ S A. Performance comparison of pretrained convolutional neural networks on crack detection in buildings[C]//Proceedings of the ISARC 2018:35th International Symposium on Automation and Robotics in Construction and International AEC/FM Hackathon:The Future of Building Things. Berlin:2018.
    [17]
    SANDLER M, HOWARD A, ZHU M, et al. MobileNet V2:Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York:IEEE, 2018:4510-4520.
    [18]
    Çaǧlar Flrat Özgenel:Concrete crack images for classification[R/OL].Berlin:Orta Dogu Teknik Universitesi, 2019[2019-07-23]. https://data.mendeley.com/datasets/5y9wdsg2zt/2.
  • Relative Articles

    [1]YANG Yinqiang, KANG Shuai, WANG Zifa, HE Zhongying, TENG Hui. Research on Damage Identification for Steel Frames Based on Convolutional Autoencoder and Correlation Function[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 78-86. doi: 10.3724/j.gyjzG23102311
    [2]WAN Neng, HUANG Minshui, ZHU Hongping. Research on Two-Stage Damage Identification of Steel Frame Based on CNN and CMCM[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 123-129. doi: 10.3724/j.gyjzG23072612
    [3]ZHANG Haoyu, DING Yong, LI Denghua. A Structural Surface Crack Detection Method Based on 3D Reconstruction[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 60-67. doi: 10.13204/j.gyjzG22102611
    [4]FAN Cunjun, JIN Songyan, JIN Nan, SHI Zhongqi, WU Yongjingbang, HAO Xintian. Crack Recognition and Quantitative Analysis Based on Deep Learning[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 126-132. doi: 10.3724/j.gyjzG24061802
    [5]LI Shujin, XIONG Shuqi, FAN Peiran, WANG Gang. Application Research on Deep Convolutional Neural Network Considering Residual Learning in Structural Damage Identification[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 192-198. doi: 10.13204/j.gyjzg21101009
    [6]YANG Yuan, CUI Qiandao, LIAN Jijian, LIU Hongbo, ZHOU Guangen, CHEN Zhihua. LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 203-208. doi: 10.13204/j.gyjzG20092308
    [7]Li Xiaofen Liu Lixin Zhang Huipeng, . EXPERIMENTAL STUDY OF FATIGUE BEHAVIOR OF THE PRESTRESSED CONCRETE BEAMS WITH PRETENSIONED BENT-UP TENDONS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 95-101. doi: 10.13204/j.gyjz201507020
    [8]Zhang Peng, Zhong Qingyu, Deng Yu, Liu Wenbing, Mou Xiaohui. EXPERIMENTAL AND THEORETICAL RESEARCH ON CRACKS OF CFRP-PCPS COMPOSITE REINFORCED CONCRETE CONTINUOUS BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 7-11. doi: 10.13204/j.gyjz201506002
    [9]Mao Lisheng, Wu Jiaye, Huang Botai. STUDY ON THE IMPACT OF CONCRETE CRACK SURFACE PRESSURE ON THE DEPTH TEST RESULTS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 146-149. doi: 10.13204/j.gyjz201306030
    [10]Ni Guowei, Jiang Dengling, Chen Juannong, Qi Jiarui. BENDING TEST AND CRACK CALCULATION OF BI-STEEL CONCRETE BEAM[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(6): 59-64. doi: 10.13204/j.gyjz200906015
    [11]Wu Jing, Meng Shaoping, Wang Cui. INTERNAL FORCE REDISTRIBUTION AND CRACK CONTROL OF PRESTRESSED CONCRETE FLAT-FLOORS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 14-17. doi: 10.13204/j.gyjz200912004
    [12]Li Yan-ying, Wu Jing, Zhang Yu-ming. DISCUSSION ON PLACEMENT AND CLOSURE TIME OF POST-POURED STRIPS OF CONCRETE FLOOR STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 27-29,78. doi: 10.13204/j.gyjz200605008
    [13]Qin Fu-hua, Shao Yong-jian, Xu Jia-xiu, Cai Hua. EXPERIMENTAL RESEARCH ON CRACKING AND RIGIDITY OF HIGH-STRENGTH LIGHT-WEIGHT AGGREGATE CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(8): 82-85. doi: 10.13204/j.gyjz200608025
    [14]Zhang Yong-sheng, Li Yan-ying, Meng Shao-ping. RESEARCH ON TEMPERATURE AND SHRINKAGE CRACK OF SUPER-LONG FRAME BEAM-SLAB STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(6): 50-53,76. doi: 10.13204/j.gyjz200606016
    [15]Zhang Yu-ming, Wu Jing, Meng Shao-ping. STUDY ON CONTROL OF CRACK IN PRESTRESSED CONCRETE STRUCTURES WITH LARGE LONGITUDINAL LENGTH[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 8-12. doi: 10.13204/j.gyjz200605003
    [16]Li Fumin, Meng Shaoping. CALCULATING OF TEMPERATURE AND SHRINKAGE REINFORCEMENTS OF OVERLONG REINFORCED CONCRETE BEAM-SLAB STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 34-38. doi: 10.13204/j.gyjz200507011
    [17]Zhao Lunyu, Shi Xudong, Zhou Jiankang. EXPERIMENTAL INVESTIGATION ON INTEGRITY OF WALL-BEAM-COLUMN COMBINED STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 60-63. doi: 10.13204/j.gyjz200508015
    [18]Chen Wanxiang, Yang Liang, Guo Zhikun, Huang Yu, Zhang Shi. STUDY ON TEMPERATURE CONTROL OF MASS CONCRETE IN XUANWU LAKE TUNNEL[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(10): 53-55. doi: 10.13204/j.gyjz200410016
    [19]Xiao Nan, Zhang Liangping, Zhang Mingshan, Zhu Guoyuan. ANALYSES OF CRACKS ON PLAYING FIELD FLOOR OF A GYMNASIUM AND TREATMENT SUGGESTIONS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(1): 85-86,84. doi: 10.13204/j.gyjz200401025
    [20]Zhao Gentian, Li Yonghe. STUDY ON DEFLECTION AND CRACK OF ROOF PLATES WITH CORRODED REINFORCEMENT AND DETERIORATED CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(9): 54-56. doi: 10.13204/j.gyjz200409016
  • Cited by

    Periodical cited type(5)

    1. 谷力. 基于Python和DCNN的仪表智能识别研究. 自动化与仪器仪表. 2025(01): 103-106+111 .
    2. 胡小辉,刘雅辉,龚栎澎,迟晓杰,孙冉冉,王紫威. 基于MobileNetV2轻量化网络的尾矿库修复植被分类研究. 赤峰学院学报(自然科学版). 2025(01): 92-97 .
    3. 赵宇翔,王卓琳,王易豪,陈玲珠,刘辉. 微调卷积神经网络在建筑外立面裂缝检测中的应用研究. 建筑结构. 2024(03): 154-159 .
    4. 刁连鹏. 基于XDoG-Wiener算法的混凝土结构裂缝识别技术研究. 工程技术研究. 2024(03): 7-10 .
    5. 刘长勇,王宜怀. 基于MobileNetV2的嵌入式物体认知系统设计与实现. 长春师范大学学报. 2024(12): 53-58+66 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.7 %FULLTEXT: 11.7 %META: 85.7 %META: 85.7 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.2 %其他: 16.2 %China: 0.6 %China: 0.6 %上海: 1.9 %上海: 1.9 %东莞: 0.6 %东莞: 0.6 %凤凰城: 0.6 %凤凰城: 0.6 %北京: 1.9 %北京: 1.9 %南京: 1.3 %南京: 1.3 %南昌: 0.6 %南昌: 0.6 %台州: 0.6 %台州: 0.6 %嘉兴: 0.6 %嘉兴: 0.6 %天津: 11.0 %天津: 11.0 %常德: 1.3 %常德: 1.3 %张家口: 3.9 %张家口: 3.9 %扬州: 3.2 %扬州: 3.2 %承德: 0.6 %承德: 0.6 %新乡: 0.6 %新乡: 0.6 %昆明: 0.6 %昆明: 0.6 %晋城: 0.6 %晋城: 0.6 %杭州: 5.2 %杭州: 5.2 %武汉: 0.6 %武汉: 0.6 %泰州: 0.6 %泰州: 0.6 %漯河: 4.5 %漯河: 4.5 %石家庄: 0.6 %石家庄: 0.6 %芒廷维尤: 11.0 %芒廷维尤: 11.0 %芝加哥: 1.3 %芝加哥: 1.3 %苏州: 0.6 %苏州: 0.6 %西宁: 17.5 %西宁: 17.5 %西安: 1.3 %西安: 1.3 %贵阳: 0.6 %贵阳: 0.6 %运城: 3.2 %运城: 3.2 %郑州: 1.3 %郑州: 1.3 %重庆: 0.6 %重庆: 0.6 %铁岭: 0.6 %铁岭: 0.6 %长沙: 1.9 %长沙: 1.9 %马鞍山: 0.6 %马鞍山: 0.6 %其他China上海东莞凤凰城北京南京南昌台州嘉兴天津常德张家口扬州承德新乡昆明晋城杭州武汉泰州漯河石家庄芒廷维尤芝加哥苏州西宁西安贵阳运城郑州重庆铁岭长沙马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (131) PDF downloads(4) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return