Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 52 Issue 7
Oct.  2022
Turn off MathJax
Article Contents
LI Shujin, XIONG Shuqi, FAN Peiran, WANG Gang. Application Research on Deep Convolutional Neural Network Considering Residual Learning in Structural Damage Identification[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 192-198. doi: 10.13204/j.gyjzg21101009
Citation: LI Shujin, XIONG Shuqi, FAN Peiran, WANG Gang. Application Research on Deep Convolutional Neural Network Considering Residual Learning in Structural Damage Identification[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 192-198. doi: 10.13204/j.gyjzg21101009

Application Research on Deep Convolutional Neural Network Considering Residual Learning in Structural Damage Identification

doi: 10.13204/j.gyjzg21101009
  • Received Date: 2021-10-10
    Available Online: 2022-10-28
  • A deep convolutional neural network damage identification method considering residual learning was proposed and applied to the damage identification of the frame structure joints. The proposed method was deeply discussed by means of experimental research, and the results showed that this method could solve the problems of convergence difficulty and poor recognition accuracy caused by the network degradation and gradient explosion, dispersion problems when the network deepening. In the comparative study of joint damage identification of test frame, the convergence speed and accuracy of deep convolutional neural network considering residual learning were higher than those of shallow conventional neural network and deep neural network, and had high accuracy and stability, and increased the possibilities to build a deeper and more complex network for damage diagnosis of complex structures in engineering. In addition, in order to improve the quality and quantity of training samples for network, a new data processing method was proposed according to the law of sample division. This method could significantly increase the sample size for training, weaken the information loss caused by data truncation under the same conditions, and greatly improve the recognition accuracy and convergence speed, and the research showed its effectiveness and applicability.
  • loading
  • [1]
    黄新波, 胡潇文, 朱永灿, 等. 基于卷积神经网络算法的高压断路器故障诊断[J]. 电力自动化设备, 2018, 38(5):136-140.
    [2]
    吴春志, 江鹏程, 冯辅周, 等. 基于一维卷积神经网络的齿轮箱故障诊断[J]. 振动与冲击, 2018, 37(22):51-56.
    [3]
    王丽华, 谢阳阳, 周子贤, 等. 基于卷积神经网络的异步电机故障诊断[J]. 振动、测试与诊断, 2017, 37(6):1208-1215.
    [4]
    李雪松, 马宏伟, 林逸洲. 基于卷积神经网络的结构损伤识别[J]. 振动与冲击, 2019, 38(1):159-167.
    [5]
    ZHANG Y, MIYAMORI Y, MIKAMI S, et al. Vibration-based structural state identification by a 1-Dimensional convolutional neural network[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34(9):822-839.
    [6]
    李书进, 赵源, 孔凡, 等. 卷积神经网络在结构损伤诊断中的应用[J]. 建筑科学与工程学报, 2020, 37(6):29-37.
    [7]
    GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77:354-377.
    [8]
    胡卫兵, 杨佳, 王龙, 等. 基于层合理论和误差反向传播神经网络的古建筑木结构损伤识别和量化研究[J]. 工业建筑, 2020, 50(11):71-77.
    [9]
    朱宏平, 张源. 基于自适应BP神经网络的结构损伤检测[J]. 力学学报, 2003, 35(1):110-116.
    [10]
    YU D, DENG L. Deep Learning and its applications to signal and information processing[J]. IEEE Signal Processing Magazine, 2011, 28(1):145-154.
    [11]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
    [12]
    REHMER A, KROLL A. On the vanishing and exploding gradient problem in gated recurrent units[J]. IFAC Papersonline, 2020, 53(2):1243-1248.
    [13]
    HADSELL R, RAO D, RUSU A A, et al. Embracing change:continual learning in deep neural networks[J]. Trends in Cognitive Sciences, 2020, 24(12):1028-1040.
    [14]
    LAAVANYA M, VIJAYARAGHAVAN V. Residual learning of transfer-learned AlexNet for image denoising[J]. IEIE Transactions on Smart Processing & Computing, 2020, 9(2):135-141.
    [15]
    HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of Physiology, 1962, 160(1):106-154.
    [16]
    GHOSH A, KUMAR H, SASTRY P. Robust loss functions under label noise for deep neural networks[C]//AAAI. 31st AAAI Conference on Artificial Intelligence. Palo Alto:2017:1919-1925.
    [17]
    VEIT A, WILBER M J, BELONGIE S. Residual networks behave like ensembles of relatively shallow networks[J]. Advances in Neural Information Processing Systems, 2016, 29:550-558.
    [18]
    董聪, 丁辉, 高嵩. 结构损伤识别和定位的基本原理与方法[J]. 中国铁道科学, 1999, 20(3):89-94.
    [19]
    KIM J T, RYU Y S, CHO H M, et al. Damage identification in beam-type structures:frequency-based method vs mode-shape-based method[J]. Engineering Structures, 2003, 25:57-67.
    [20]
    HE K, ZHANG X, REN S, et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//IEEE. International Conference on Computer Vision. New York:2015:1026-1034.
    [21]
    MANCEV D, TODOROVIC B. A primal sub-gradient method for structured classification with the averaged sum loss[J]. International Journal of Applied Mathematics & Computer Science, 2014, 24(4):917-930.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (147) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return