Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 54 Issue 5
May  2024
Turn off MathJax
Article Contents
ZHANG Haoyu, DING Yong, LI Denghua. A Structural Surface Crack Detection Method Based on 3D Reconstruction[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 60-67. doi: 10.13204/j.gyjzG22102611
Citation: ZHANG Haoyu, DING Yong, LI Denghua. A Structural Surface Crack Detection Method Based on 3D Reconstruction[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 60-67. doi: 10.13204/j.gyjzG22102611

A Structural Surface Crack Detection Method Based on 3D Reconstruction

doi: 10.13204/j.gyjzG22102611
  • Received Date: 2022-10-26
    Available Online: 2024-06-22
  • In view of the lack of integrated expression of crack region parameters in traditional digital image processing-based crack monitoring methods, the paper proposed a structural surface crack detection method based on three-dimensional reconstruction. This method not only improves the accuracy of crack edge recognition but also realizes the integration of crack regions and parameter calculation. The location of cracks can be determined by mapping two-dimensional cracks onto three-dimensional models. The main work includes: planning the photographic path, collecting image data, and constructing an image dataset targeting building cracks according to the facade height and structural characteristics of the building; establishing a three-dimensional model of the exterior facade area with cracks using Structure from Motion SfM reconstruction technology, and obtaining object distance information without the need for ranging equipment based on the distance from the camera center to the crack fitting plane; identifying and segmenting structural surface cracks using cascaded neural networks; calculating crack parameters using the pixel resolution obtained from the real-world 3D model. The experimental results demonstrated that the proposed method could accurately identify cracks in building facades while simultaneously calculating crack widths and lengths, ultimately achieving crack integration and localization. The relative error of crack width is less than 1.5%, indicating good practical value.
  • loading
  • [1]
    MWA B, WWA B, DZA B, et al. The pixel crack reconstruction method: from fracture image to crack geological model for fracture evolution simulation-ScienceDirect[J/OL]. Construction and Building Materials, 2021[2020-12-02].https://doi.org/10.1016/j.conbuildmat.2020.121733.
    [2]
    LIAO K W, LEE Y T. Detection of rust defects on steel bridge coatings via digital image recognition[J].Automation in Construction, 2016,71:294-306.
    [3]
    张振海, 尹晓珍, 王阳萍, 等. 基于特征分析的图像式地铁隧道裂缝检测方法研究[J]. 铁道科学与工程学报, 2019,16(11):2791-2800.
    [4]
    贺福强, 平安, 罗红, 等. 局部特征聚类联合区域增长的桥梁裂缝检测[J]. 科学技术与工程, 2019,19(34):272-277.
    [5]
    TULBURE A A, ADRIAN-ALEXANDRU T, HENRIETTA E D. A review on modern defect detection models using DCNNs-Deep convolutional neural networks[J]. Journal of Advanced Research, 2022,35:33-48.
    [6]
    YLA B, TBAB C, BO X D, et al. A deep residual neural network framework with transfer learning for concrete dams patch-level crack classification and weakly-supervised localization[J/OL]. Measurement, 2022[2021-12-23].https://doi.org/10.1016/j.measurement.2021.110641.
    [7]
    陈健昌, 张志华. 融于图像多特征的路面裂缝智能化识别[J]. 科学技术与工程, 2021,21(24):10491-10497.
    [8]
    徐国整, 廖晨聪, 陈锦剑, 等. 基于HU-ResNet的混凝土表观裂缝信息提取[J]. 计算机工程, 2020,46(11):279-285.
    [9]
    MA Z, LIU S. A review of 3D reconstruction techniques in civil engineering and their applications[J].Advanced Engineering Informatics, 2018,37:163-174.
    [10]
    刘宇飞, 樊健生, 聂建国, 等. 结构表面裂缝数字图像法识别研究综述与前景展望[J]. 土木工程学报, 2021,54(6):79-98.
    [11]
    曹霆, 王卫星, 杨楠, 等. 基于三维激光扫描技术的路面断板深度检测[J]. 红外与激光工程, 2017,46(2):88-93.
    [12]
    张辉霖, 李登华, 丁勇. 面向混凝土裂缝检测的级联神经网络算法研究[J]. 水力发电学报, 2022,41(8):134-143.
    [13]
    刘学增, 叶康. 隧道衬砌裂缝的远距离图像测量技术[J]. 同济大学学报(自然科学版), 2012,40(6):829-836.
    [14]
    吴玉龙, 岳大森, 丁勇, 等. 基于图像处理的膨胀圆裂缝检测算法[J]. 无损检测, 2020,42(3):9-13.
    [15]
    Zhang T Y, Suen C Y. A fast parallel algorithm for thinning digital patterns[J]. Communications of the ACM, 1984,27(3):236-239.
    [16]
    刘宇飞. 基于模型修正与图像处理的多尺度结构损伤识别[D]. 北京:清华大学, 2015.
    [17]
    LIU Y, CHO S, SPENCER B F, et al. Concrete crack assessment using digital image processing and 3D scene reconstruction[J/OL].Journal of Computing in Civil Engineering, 2016[2014-12-02].https://doi.org/10.1061/(ASCE)CP.1943-5487.0000446.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (123) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return