Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 51 Issue 7
Nov.  2021
Turn off MathJax
Article Contents
YANG Yuan, CUI Qiandao, LIAN Jijian, LIU Hongbo, ZHOU Guangen, CHEN Zhihua. LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 203-208. doi: 10.13204/j.gyjzG20092308
Citation: YANG Yuan, CUI Qiandao, LIAN Jijian, LIU Hongbo, ZHOU Guangen, CHEN Zhihua. LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 203-208. doi: 10.13204/j.gyjzG20092308

LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE

doi: 10.13204/j.gyjzG20092308
  • Received Date: 2020-09-23
    Available Online: 2021-11-11
  • The Kiewitt (K6) spherical reticulated shell was used as the research object to study the data-driven damage prediction and assessment of the space frame structure. By numerical simulations, Structural Health Monitoring (SHM) simulation data of structural modal frequency subjected to uniform atmospheric corrosion were obtained. A Long-Short-Term Memory (LSTM) based the deep learning model for structural damage prediction and assessment was constructed. Finally, the LSTM-based damage prediction and assessment method for the space frame structure was summarized. The results showed that LSTM could be used to establish a data-driven deep learning model for SHM data, predict and assess the structural health status. The model performed well on the simulation data with good anti-noise properties which could nicely fit SHM simulation data with a good short-term prediction effect. The updated data sets could readjust the model, so as to achieve the continuous prediction and assessment for structural health status.
  • loading
  • [1]
    汪菁. 深圳市民中心屋顶网架结构健康监测系统及其关键技术研究[D]. 武汉:武汉理工大学, 2008.
    [2]
    秦杰, 徐瑞龙, 徐亚柯, 等. 国家体育馆安全监测系统研究[J]. 施工技术, 2009, 38(3):40-43.
    [3]
    李宏男, 杨礼东, 任亮, 等. 大连市体育馆结构健康监测系统的设计与研发[J]. 建筑结构学报, 2013, 34(11):40-49.
    [4]
    罗尧治, 苑佳谦. 大跨度空间结构安全预警评估技术研究[J]. 空间结构, 2011, 17(3):61-68.
    [5]
    GOODFELLOW I, BENGIO Y, COURVILLE A. Deep Learning[M]. Canbridge:MIT Press, 2016:373.
    [6]
    GOODFELLOW I, BENGIO Y, COURVILLE A. 深度学习[M]. 赵申剑, 黎彧君, 李凯, 等, 译.北京:人民邮电出版社, 2017:319.
    [7]
    PASCANU R, MIKOLOV T, BENGIO Y. On the Difficulty of Training Recurrent Neural Networks[C]//International Conference on Machine Learning. 2013:1310-1318.
    [8]
    BENGIO Y, SIMARD P, FRASCONI P. Learning Long-Term Dependencies with Gradient Descent is Difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2):157-166.
    [9]
    HOCHREITER S, BENGIO Y, FRASCONI P, SCHMIDHUBER J. Gradient flow in recurrent nets:the difficulty of learning long-term dependencie[G]//KOLEN J F, KREMER S C.A Field Guide to Dynamical Recurrent Neural Networks. Piscataway:Wiley-IEEE Press, 2001:237-243.
    [10]
    HOCHREITER S, SCHMIDHUBER J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8):1735-1780.
    [11]
    梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究[J]. 中国腐蚀与防护学报, 2005(1):2-7.
    [12]
    中华人民共和国住房和城乡建设部. 空间网格结构技术规程:JGJ 7-2010[S]. 北京:中国建筑工业出版社, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (163) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return