Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HU Jianlin, XUE Jinhao, GUO Jiangfeng, MENG Zhipeng, LIU Yang, ZHENG Ruihai. Experimental Study on Influential Factors for Shear Properties of Interfaces Between Anchor Bolts and Soil Under Different Confining Pressures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 200-205. doi: 10.3724/j.gyjzG22090804
Citation: YANG Yinqiang, KANG Shuai, WANG Zifa, HE Zhongying, TENG Hui. Research on Damage Identification for Steel Frames Based on Convolutional Autoencoder and Correlation Function[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 78-86. doi: 10.3724/j.gyjzG23102311

Research on Damage Identification for Steel Frames Based on Convolutional Autoencoder and Correlation Function

doi: 10.3724/j.gyjzG23102311
  • Received Date: 2023-10-23
    Available Online: 2024-12-05
  • Aiming at the problem that the damage recognition accuracy of the deep learning model decreases under the influence of data sample imbalance and noise, a structural damage recognition method based on the combination of convolutional autoencoder and correlation function was proposed. Taking the stand scale test of Qatar University as an example, the sample data of healthy working conditions were input into the convolutional autoencoder model for learning, and the constructed convolutional autoencoder model was used to reconstruct the data samples of the healthy structural data samples, and the maximum error of data reconstruction was used as a threshold to judge whether the structure was damaged. Then, Gaussian white noise with different signal-to-noise ratios was added to the data set containing healthy working condition samples and damaged working condition samples, and the data samples added with noise were preprocessed by autocorrelation function. The data set processed by the autocorrelation function was input into the model for training and prediction respectively, and the prediction results of the model were compared and analyzed. The results showed that the method could accurately identify structural damage when the data samples without noise were not balanced, and the identification accuracy could reach 100%. However, under the influence of adding noise, the original characteristics of the data could be highlighted after being processed by the autocorrelation function. Under the noise condition with a signal-to-noise ratio of 5, the recognition accuracy could still reach 100%, which proved that the method could effectively improve the accuracy of damage recognition of the autoencoder model and had better noise resistance.
  • [1]
    赵一男, 公茂盛, 杨游.结构损伤识别方法研究综述[J].世界地震工程, 2020, 36(2):73-84.
    [2]
    ALVANDI A, CREMONA C.Assessment of vibration-based damage identification techniques[J].Journal of Sound and Vibration, 2006, 292(1/2):179-202.
    [3]
    TOMASZEWSKA A.Influence of statistical errors on damage detection based on structural flexibility and mode shape curvature[J].Computers and Structures, 2010, 88(3/4):154-164.
    [4]
    RADZIENSKI M, KRAWCZUK M, PALACZ M.Improvement of damage detection methods based on experimental modal parameters[J]. Mechanical Systemsand Signal Processing, 2011, 25(6):2169-2190.
    [5]
    WORDEN K, MANSON G, FIELLER N R J. Damage detectionusing outlier analysis [J].Journal of Soundand Vibration, 2000, 229(3):647-667.
    [6]
    BALSAMO L, BETTI R. Data-based structural health monitoring using small training datasets[J].Structural Control and Health Monitoring, 2015, 22(10): 1240-1264.
    [7]
    GARCIA D, TCHERNIAK D.An experimental study on the data-driven structural health monitoring of large wind turbine blades using a single accelerometer and actuator [J].Mechanical Systems and Signal Processing, 2019, 127(15):102-119.
    [8]
    颜王吉, 王朋朋, 孙倩, 等.基于振动响应传递比函数的系统识别研究进展[J].工程力学, 2018, 35(5):1-9.
    [9]
    YAN W J, ZHAO M Y, SUN Q, et al.Transmissibility-based system identification for structural health monitoring:fundamentals, approaches, and applications[J].Mechanical Systems and Signal Processing, 2019, 117:453-482.
    [10]
    宗周红, 任伟新, 阮毅. 土木工程结构损伤诊断研究进展[J]. 土木工程学报, 2003, 36(5):105-110.
    [11]
    杨铄, 许清风, 王卓琳.基于卷积神经网络的结构损伤识别研究进展[J].建筑科学与工程学报, 2022, 39(4):38-57.
    [12]
    ABDELJABER O, AVCI O, KIRANYAZ M S, et al. 1-D CNNs for structural damage detection: verification on a structural health monitoring benchmark data[J]. Neurocomputing, 2018, 275:1308-1317.
    [13]
    LIN Y, NIE Z, MA H. Structural damage detection with automatic feature-extraction through deep learning[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(12):1025-1046.
    [14]
    李雪松, 马宏伟, 林逸洲.基于卷积神经网络的结构损伤识别[J].振动与冲击, 2019, 38(1):159-167.
    [15]
    骆勇鹏, 王林堃, 廖飞宇, 等.基于一维卷积神经网络的结构损伤识别[J].地震工程与工程振动, 2021, 41(4):145-156.
    [16]
    成浩维, 资文杰, 彭双, 等.基于半监督学习的三维Mesh建筑物立面提取与语义分割方法[J].郑州大学学报(理学版), 2023, 55(4):8-15.
    [17]
    GUO Y, JI T, WANG Q, et al. Unsupervised anomaly detection in IoT systems for smart cities[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 2231-2242.
    [18]
    NI F T, ZHANG J, NOORI M N.Deep learning for data anomaly detection and datacompression of a long-span suspension bridge[J].Computer-Aided Civil and Infrastructure Engineering, 2019, 35 (7):685-700.
    [19]
    LIN S Z, SHI Y, XUE Z.Character-level intrusion detection based on convolutional neural networks[C]//International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro: 2018:1-8.
    [20]
    郑婷婷. 基于堆叠稀疏自编码器和分布式应变的桥梁表面裂缝检测[D].西安:长安大学, 2021.
    [21]
    YU J, ZHOU X. One-dimensional residual convolutional autoencoder based feature learning for gearbox fault diagnosis[J].IEEE Transactions on Industrial Informatics, 2020, 16 (10):6347-6358.
    [22]
    CUI M L, WANG Y Q, LIN X S, et al.Fault diagnosis of rolling bearings based on an improved stack autoencoder and support vector machine[J].IEEE Sensors Journal, 2020, 21(4):4927-4937.
    [23]
    滑世辉, 韩立国.基于深度卷积自编码网络地震数据去噪方法[J].地球物理学进展, 2023, 38(2):654-661.
    [24]
    刘建华, 杨皓楠, 何静, 等.基于约束对抗卷积自编码记忆融合网络的故障诊断[J].电机与控制学报, 2023, 27(6):148-159.
    [25]
    方能炜, 刘兰徽, 邢镔, 等.自相关结合灰色关联度的轴承早期故障诊断方法[J].机械科学与技术, 2023, 42(12):1972-1976.
    [26]
    王玉山, 田良, 郭惠勇.基于加速度内积向量和灰云模型的结构损伤识别[J].重庆大学学报, 2018, 41(1):9-16.
    [27]
    YANG Z C, WANG L, WANG H, et al.Damage detection in composite structures using vibration response under stochastic excitation[J].Journal of Sound and Vibration, 2009, 325:755-768.
    [28]
    胡鑫, 杨智春, 王乐.基于振动响应内积向量和数据融合的结构损伤检测方法试验研究[J].振动与冲击, 2013, 32(14):109-115.
    [29]
    付茂森. 基于卷积自编码神经网络的桥梁损伤识别研究[D].石家庄:石家庄铁道大学, 2022.
    [30]
    AVCI O, ABDELJABER O, KIRANYAZ S, et al.Convolutional neural networks for real-time and wireless damage detection[J]. Dynamics of Civil Structures, 2020, 2:129-136.
    [31]
    DYKE S, BERNAL D, BECK J, et al. Experimental phase II of the structural health monitoring benchmark problem[C]//Proc 16th ASCE Engineering Mechanics Conference. Colorado: 2003.
  • Relative Articles

    [1]HE Gang, ZHENG Qiqi, YANG Song, LI Dengfeng, MEI Xuefeng, LI Zezhou. Analysis on Mechanical Characteristics of h-Type Anti-Slide Piles and Cantilevered Double-Row Anti-Slide Piles[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 192-197. doi: 10.3724/j.gyjzG22092609
    [2]DING Shijun, YANG Wenzhi, ZHU Zhaoqing, YUAN Chi. Analysis on Uplift Bearing Mechanisms and Failure Modes of Anchor Bolts in Hard Rock Foundation[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(8): 191-198. doi: 10.13204/j.gyjzG22060608
    [3]WANG Jiaquan, ZHU Mengke, LIN Zhinan, TANG Ying. Experimental Analysis of Clay Effect and Confining Pressure Effect on Mechanical Properties of Sea Sand[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 157-162. doi: 10.13204/j.gyjzG21121703
    [4]DONG Jie, QIAN Ren, ZHANG Shuai, LI Ran. Experimental Study on Bearing Characteristics of Underreamed Rock Bolts in Aeolian Sand[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 180-186. doi: 10.13204/j.gyjzG21070808
    [5]CHEN Hang-jie, HE Fei, WANG Xu, CHEN Ming-wei. Research on Influence of Roughness on Shear Characteristics of Interfaces Between Frozen Soil and Structures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 186-192,213. doi: 10.13204/j.gyjzG22012005
    [6]DONG Jie, SUN Jinghua, TAO Chunchen. Mechanical Analysis on Anchor-Soil Interfaces and Pull-Out Tests of Anchorage[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(2): 115-119. doi: 10.13204/j.gyjzG20122202
    [7]WANG Yi, TONG Huawei, QIU Rongkang, YUAN Jie. RESEARCH ON MECHANICAL PROPERTIES OF RUBBER-PARTICLE-IMPROVED SOIL CEMENTED BY MICP[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 8-14,7. doi: 10.13204/j.gyjzG20062207
    [10]Shi Jianjun, Chen Sili, Xiao Fa, Liu Zuotao, Zhang Jingyu. EXPERIMENTAL STUDY OF MECHANICAL PROPERTIES EFFECTS ON POLYMER CEMENT MORTAR UNDER FREEZING-THAWING ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 19-22. doi: 10.13204/j.gyjz201502005
    [11]Zhang Yanjun, Wang Chaoxiong, Zhang Rong, Xiao Yucheng. CONTRAST TEST BETWEEN GEOFABRIC-COMPOSITE BOLT AND TRADITIONAL BOLT IN THE CATACLASTIC ROCK[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 90-93. doi: 10.13204/j.gyjz201305019
    [12]Shao Yan, Wang Shichuan, Li Changyong. CORRELATION ANALYSIS OF PHYSICAL AND MECHANICAL CHARACTERISTICS INDEXES OF SOFT SOIL FOR THE LAKESHORE NEW DISTRACT IN HEFEI[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 86-89. doi: 10.13204/j.gyjz201305018
    [13]Guo Gang, Liu Zhong, Yang Song, Zhang Yi, Lu Jingchun. MODEL TEST RESEARCH ON FAILURE MODES OF DIFFERENT EMBEDDED DEPTH UNDERREAMED GROUND ANCHOR UNDER VERTICAL PULLOUT[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(1): 123-127,122. doi: 10.13204/j.gyjz201201023
    [14]Cui Yongcheng, Cui Zizhi, Zhou Jian, Zhou Kang, Zhang Min. RESEARCH ON MECHANICAL PROPERTIES OF FLY ASH CEMENT SOIL IN YINCHAN[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(7): 105-109,151. doi: 10.13204/j.gyjz201207017
    [15]Tian Jianbo, Han Xiaolei, Liu Jiangyuan. LARGE-SCALE SIMPLE SHEAR TEST ON MECHANICAL PROPERTIES OF INTERFACE BETWEEN SANDY SOIL AND CONCRETE FACE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(7): 110-114. doi: 10.13204/j.gyjz201207018
    [16]Zhang Peng, Zhang Shengli, Huang Liuyun, Deng Langni. PULL-OUT TEST AND ANALYSIS OF PRESSURE-TYPE ANCHOR OF CFRP TENOON[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(10): 98-102. doi: 10.13204/j.gyjz201010022
    [17]Li Weiwen, Yan Zhiliang, Sui Lili, Xing Feng, Cao Zhengliang. THE INFLUENCE OF TEMPERATURE-HUMIDITY CYCLES ON BENDING MECHANICAL BEHAVIOR OF CONCRETE BEAMS STRENGTHENED BY CFRP[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 27-32. doi: 10.13204/j.gyjz201004007
    [18]Yan Fuyou, Jia Xin, Yuan Yong. EXPERIMENTS ON THE BONDING BEHAVIOUR OF GFRP BOLTS WITH MORTAR[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(12): 59-60,97. doi: 10.13204/j.gyjz200412016
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.510
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.8 %FULLTEXT: 10.8 %META: 89.2 %META: 89.2 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 30.8 %其他: 30.8 %北京: 1.5 %北京: 1.5 %十堰: 3.1 %十堰: 3.1 %天津: 1.5 %天津: 1.5 %宜宾: 1.5 %宜宾: 1.5 %张家口: 7.7 %张家口: 7.7 %成都: 1.5 %成都: 1.5 %扬州: 6.2 %扬州: 6.2 %武汉: 4.6 %武汉: 4.6 %湖州: 1.5 %湖州: 1.5 %漯河: 3.1 %漯河: 3.1 %石家庄: 1.5 %石家庄: 1.5 %芒廷维尤: 18.5 %芒廷维尤: 18.5 %西宁: 1.5 %西宁: 1.5 %西安: 6.2 %西安: 6.2 %运城: 7.7 %运城: 7.7 %长沙: 1.5 %长沙: 1.5 %其他北京十堰天津宜宾张家口成都扬州武汉湖州漯河石家庄芒廷维尤西宁西安运城长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (48) PDF downloads(5) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return