Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Hu Changming, Mei Yuan, Wang Xueyan, Cui Yao, Zhang Wencui. EXPERIMENTAL RESEARCH ON COMPACTION TECHNOLOGY OF MALAN LOSSES[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 78-81. doi: 10.13204/j.gyjz201211017
Citation: YANG Yinqiang, KANG Shuai, WANG Zifa, HE Zhongying, TENG Hui. Research on Damage Identification for Steel Frames Based on Convolutional Autoencoder and Correlation Function[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 78-86. doi: 10.3724/j.gyjzG23102311

Research on Damage Identification for Steel Frames Based on Convolutional Autoencoder and Correlation Function

doi: 10.3724/j.gyjzG23102311
  • Received Date: 2023-10-23
    Available Online: 2024-12-05
  • Aiming at the problem that the damage recognition accuracy of the deep learning model decreases under the influence of data sample imbalance and noise, a structural damage recognition method based on the combination of convolutional autoencoder and correlation function was proposed. Taking the stand scale test of Qatar University as an example, the sample data of healthy working conditions were input into the convolutional autoencoder model for learning, and the constructed convolutional autoencoder model was used to reconstruct the data samples of the healthy structural data samples, and the maximum error of data reconstruction was used as a threshold to judge whether the structure was damaged. Then, Gaussian white noise with different signal-to-noise ratios was added to the data set containing healthy working condition samples and damaged working condition samples, and the data samples added with noise were preprocessed by autocorrelation function. The data set processed by the autocorrelation function was input into the model for training and prediction respectively, and the prediction results of the model were compared and analyzed. The results showed that the method could accurately identify structural damage when the data samples without noise were not balanced, and the identification accuracy could reach 100%. However, under the influence of adding noise, the original characteristics of the data could be highlighted after being processed by the autocorrelation function. Under the noise condition with a signal-to-noise ratio of 5, the recognition accuracy could still reach 100%, which proved that the method could effectively improve the accuracy of damage recognition of the autoencoder model and had better noise resistance.
  • [1]
    赵一男, 公茂盛, 杨游.结构损伤识别方法研究综述[J].世界地震工程, 2020, 36(2):73-84.
    [2]
    ALVANDI A, CREMONA C.Assessment of vibration-based damage identification techniques[J].Journal of Sound and Vibration, 2006, 292(1/2):179-202.
    [3]
    TOMASZEWSKA A.Influence of statistical errors on damage detection based on structural flexibility and mode shape curvature[J].Computers and Structures, 2010, 88(3/4):154-164.
    [4]
    RADZIENSKI M, KRAWCZUK M, PALACZ M.Improvement of damage detection methods based on experimental modal parameters[J]. Mechanical Systemsand Signal Processing, 2011, 25(6):2169-2190.
    [5]
    WORDEN K, MANSON G, FIELLER N R J. Damage detectionusing outlier analysis [J].Journal of Soundand Vibration, 2000, 229(3):647-667.
    [6]
    BALSAMO L, BETTI R. Data-based structural health monitoring using small training datasets[J].Structural Control and Health Monitoring, 2015, 22(10): 1240-1264.
    [7]
    GARCIA D, TCHERNIAK D.An experimental study on the data-driven structural health monitoring of large wind turbine blades using a single accelerometer and actuator [J].Mechanical Systems and Signal Processing, 2019, 127(15):102-119.
    [8]
    颜王吉, 王朋朋, 孙倩, 等.基于振动响应传递比函数的系统识别研究进展[J].工程力学, 2018, 35(5):1-9.
    [9]
    YAN W J, ZHAO M Y, SUN Q, et al.Transmissibility-based system identification for structural health monitoring:fundamentals, approaches, and applications[J].Mechanical Systems and Signal Processing, 2019, 117:453-482.
    [10]
    宗周红, 任伟新, 阮毅. 土木工程结构损伤诊断研究进展[J]. 土木工程学报, 2003, 36(5):105-110.
    [11]
    杨铄, 许清风, 王卓琳.基于卷积神经网络的结构损伤识别研究进展[J].建筑科学与工程学报, 2022, 39(4):38-57.
    [12]
    ABDELJABER O, AVCI O, KIRANYAZ M S, et al. 1-D CNNs for structural damage detection: verification on a structural health monitoring benchmark data[J]. Neurocomputing, 2018, 275:1308-1317.
    [13]
    LIN Y, NIE Z, MA H. Structural damage detection with automatic feature-extraction through deep learning[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(12):1025-1046.
    [14]
    李雪松, 马宏伟, 林逸洲.基于卷积神经网络的结构损伤识别[J].振动与冲击, 2019, 38(1):159-167.
    [15]
    骆勇鹏, 王林堃, 廖飞宇, 等.基于一维卷积神经网络的结构损伤识别[J].地震工程与工程振动, 2021, 41(4):145-156.
    [16]
    成浩维, 资文杰, 彭双, 等.基于半监督学习的三维Mesh建筑物立面提取与语义分割方法[J].郑州大学学报(理学版), 2023, 55(4):8-15.
    [17]
    GUO Y, JI T, WANG Q, et al. Unsupervised anomaly detection in IoT systems for smart cities[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 2231-2242.
    [18]
    NI F T, ZHANG J, NOORI M N.Deep learning for data anomaly detection and datacompression of a long-span suspension bridge[J].Computer-Aided Civil and Infrastructure Engineering, 2019, 35 (7):685-700.
    [19]
    LIN S Z, SHI Y, XUE Z.Character-level intrusion detection based on convolutional neural networks[C]//International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro: 2018:1-8.
    [20]
    郑婷婷. 基于堆叠稀疏自编码器和分布式应变的桥梁表面裂缝检测[D].西安:长安大学, 2021.
    [21]
    YU J, ZHOU X. One-dimensional residual convolutional autoencoder based feature learning for gearbox fault diagnosis[J].IEEE Transactions on Industrial Informatics, 2020, 16 (10):6347-6358.
    [22]
    CUI M L, WANG Y Q, LIN X S, et al.Fault diagnosis of rolling bearings based on an improved stack autoencoder and support vector machine[J].IEEE Sensors Journal, 2020, 21(4):4927-4937.
    [23]
    滑世辉, 韩立国.基于深度卷积自编码网络地震数据去噪方法[J].地球物理学进展, 2023, 38(2):654-661.
    [24]
    刘建华, 杨皓楠, 何静, 等.基于约束对抗卷积自编码记忆融合网络的故障诊断[J].电机与控制学报, 2023, 27(6):148-159.
    [25]
    方能炜, 刘兰徽, 邢镔, 等.自相关结合灰色关联度的轴承早期故障诊断方法[J].机械科学与技术, 2023, 42(12):1972-1976.
    [26]
    王玉山, 田良, 郭惠勇.基于加速度内积向量和灰云模型的结构损伤识别[J].重庆大学学报, 2018, 41(1):9-16.
    [27]
    YANG Z C, WANG L, WANG H, et al.Damage detection in composite structures using vibration response under stochastic excitation[J].Journal of Sound and Vibration, 2009, 325:755-768.
    [28]
    胡鑫, 杨智春, 王乐.基于振动响应内积向量和数据融合的结构损伤检测方法试验研究[J].振动与冲击, 2013, 32(14):109-115.
    [29]
    付茂森. 基于卷积自编码神经网络的桥梁损伤识别研究[D].石家庄:石家庄铁道大学, 2022.
    [30]
    AVCI O, ABDELJABER O, KIRANYAZ S, et al.Convolutional neural networks for real-time and wireless damage detection[J]. Dynamics of Civil Structures, 2020, 2:129-136.
    [31]
    DYKE S, BERNAL D, BECK J, et al. Experimental phase II of the structural health monitoring benchmark problem[C]//Proc 16th ASCE Engineering Mechanics Conference. Colorado: 2003.
  • Relative Articles

    [1]YANG Xinyu, YU Xian, ZHANG Ming, FAN Haodong, LI Wenlong, LIU Nanfeng, YU Zhixiang, LIU Changliang, CHEN Shuwei, ZHAO Shixing. Static Bending Test of Bamboo Scrimber Solid Web Beams and Trusses[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 52-59. doi: 10.3724/j.gyjzG24111103
    [2]ZHANG Ailin, WU Baohuan, LIU Xuechun. BEARING CAPACITY ANALYSIS OF L-SHAPED STEEL SPECIAL-SHAPED COLUMN WRAPPED WITH CONCRETE UNDER AXIAL COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 123-132,164. doi: 10.13204/j.gyjzG20032801
    [3]LI Shunqun, WU Qiong, ZHANG Fan, LI Lijun. INFLUENCES OF THE WATER CONTENT ON SOIL THERMAL CONDUCTIVITY COEFFICIENTS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 177-180. doi: 10.13204/j.gyjzG20070106
    [5]Wang Xikang, Liu Jingzheng. ON DETERMINATION FOR THE COEFFICIENT OF ELASTIC UNIFORM COMPRESSION OF NATURAL SOIL[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 98-101. doi: 10.13204/j.gyjz201304020
    [6]Rao Weiguo, Ma Furong, Chen Rigao, Pang Yingbo, Zhang Zhihong, Xiao Zhaoran. EXPERIMENTAL RESEARCH ON THE EFFECT OF THE HEAVY METAL POLLUTANTS ON SOIL COMPACTNESS AND SHEAR STRENGTH[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 92-97. doi: 10.13204/j.gyjz201304019
    [7]Liu Huan, Yao Yong, Chu Yunpeng, Deng Yongjun, Su Zehong. EXPERIMENTAL STUDY OF PERFORMANCE OF AXIALLY COMPRESSED SANDY PEBBLE FILLED THIN-WALLED SQUARE STEEL TUBULAR COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 120-123,148. doi: 10.13204/j.gyjz201309023
    [8]Zhao Liya, Liu Baojian, Wang Shutao. EXPERIMENTAL STUDY ON ROAD ENGINEERING PROPERTY OF COMPACTION PHYLLITE MATERIAL ABANDONING[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(12): 84-87,70. doi: 10.13204/j.gyjz201112019
    [9]Wang Xikang, Liu Jingzheng. EFFECT OF VARIATION OF PRESSURE IN SOIL ON THE COEFFICIENT OF ELASTIC UNIFORM COMPRESSION OF BASE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(12): 55-59. doi: 10.13204/j.gyjz201012015
    [10]Wang Xikang, Liu Jingzheng. STUDY ON THE RELATIONSHIP BETWEEN THE COEFFICIENT OF ELASTIC UNIFORM COMPRESSION AND BASE AREA[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(1): 69-73. doi: 10.13204/j.gyjz200801017
    [11]Li Xiumin, Shi Yongjiu, Wang Yuanqing. ANALYSIS OF FACTORS FOR THE LOAD-CARRYING PERFORMANCE OF CABLE-STRUT STEEL ARCH[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 96-99. doi: 10.13204/j.gyjz200705024
    [12]Xiong Yi-yong, Zhao Jiang-qian. A SIMPLIFIED CALCULATING METHOD OF THE SECTION OF SOLID COMBINATION CURVED MEMBER[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(7): 87-88,91. doi: 10.13204/j.gyjz200607023
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.3 %FULLTEXT: 19.3 %META: 80.7 %META: 80.7 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 43.8 %其他: 43.8 %其他: 1.4 %其他: 1.4 %中卫: 1.4 %中卫: 1.4 %北京: 11.0 %北京: 11.0 %十堰: 1.4 %十堰: 1.4 %南昌: 2.7 %南昌: 2.7 %安康: 1.4 %安康: 1.4 %常州: 1.4 %常州: 1.4 %张家口: 2.7 %张家口: 2.7 %成都: 2.7 %成都: 2.7 %朝阳: 1.4 %朝阳: 1.4 %武汉: 1.4 %武汉: 1.4 %温州: 1.4 %温州: 1.4 %漯河: 1.4 %漯河: 1.4 %芒廷维尤: 15.1 %芒廷维尤: 15.1 %芝加哥: 1.4 %芝加哥: 1.4 %西安: 1.4 %西安: 1.4 %贵阳: 1.4 %贵阳: 1.4 %运城: 4.1 %运城: 4.1 %鄂尔多斯: 1.4 %鄂尔多斯: 1.4 %其他其他中卫北京十堰南昌安康常州张家口成都朝阳武汉温州漯河芒廷维尤芝加哥西安贵阳运城鄂尔多斯

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (55) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return