Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Rui, ZHANG Chun. RESEARCH ON STRUCTURAL DAMAGE DETECTION METHOD BASED ON ONE-DIMENSIONAL DILATED CONVOLUTION NEURAL NETWORK[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 177-183. doi: 10.13204/j.gyjzg20103011
Citation: LI Rui, ZHANG Chun. RESEARCH ON STRUCTURAL DAMAGE DETECTION METHOD BASED ON ONE-DIMENSIONAL DILATED CONVOLUTION NEURAL NETWORK[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 177-183. doi: 10.13204/j.gyjzg20103011

RESEARCH ON STRUCTURAL DAMAGE DETECTION METHOD BASED ON ONE-DIMENSIONAL DILATED CONVOLUTION NEURAL NETWORK

doi: 10.13204/j.gyjzg20103011
  • Received Date: 2020-10-30
    Available Online: 2022-02-21
  • It is of great significance to use vibration response for intelligent detection and diagnosis of structural damage. However, the traditional deep convolution neural network model has some problems in processing structural vibration signal, such as large model parameters, loss of signal detail information and poor generalization performance. Therefore, a structural damage detection method based on one-dimensional dilated convolution neural network was proposed. The neural network model used in this method used dilated convolution to replace the traditional combination layer of convolution and pooling, and increased the receptive field while keeping the number of parameters unchanged; global pooling layer was used to replace the traditional full connection layer to reduce the model parameters and prevent the occurrence of over fitting, and then according to the phenomenon of class imbalance in the actual vibration signal data set, the cost sensitive classifier was trained by setting penalty weights for different types of signals, which could effectively improve the structural damage detection accuracy under unbalanced samples. The verification and application analysis of the damage experiment on the grandstand scale model of the University of Qatar showed that the method proposed in the paper could automatically extract the optimal features from the original acceleration signals and classify them without losing the detailed information of the signals, thus achieving high recognition accuracy and classification success ratio, which could be used for real-time damage detection.
  • [1]
    BAO Y, TANG Z, LI H, et al.Computer Vision and Deep Learning-Based Data Anomaly Detection Method for Structural Health Monitoring[J].Structural Health Monitoring, 2019, 18(2):401-421.
    [2]
    卢宏涛, 张秦川.深度卷积神经网络在计算机视觉中的应用研究综述[J].数据采集与处理, 2016(1):1-17.
    [3]
    CHA Y J, CHOI W, BÜYÜKÖZTÜRK O.Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks[J].Computer-Aided Civil & Infrastructure Engineering, 2017, 32(5):361-378.
    [4]
    李雪松, 马宏伟, 林逸洲.基于卷积神经网络的结构损伤识别[J].振动与冲击, 2019, 38(1):167-175.
    [5]
    BAO Y, TANG Z, LI H, et al.Computer Vision and Deep Learning-Based Data Anomaly Detection Method for Structural Health Monitoring[J].Structural Health Monitoring an International Journal, 2018, 18(2):401-421.
    [6]
    KIRANYAZ S, AVCI O, ABDELJABER O, et al.1D Convolutional Neural Networks and Applications:A Survey[J].Mechanical Systems and Signal Processing, 2021, 151.DOI: 10.1016/j.ymssp.2020.107398.
    [7]
    LIN Y Z, NIE Z H, MA H W.Structural Damage Detection with Automatic Feature-Extraction Through Deep Learning[J].Computer-Aided Civil and Infrastructure Engineering, 2017, 32(12):1025-1046.
    [8]
    LECUN Y, BOTTOU L.Gradient-Based Learning Applied to Document Recognition[J].Proceedings of the IEEE, 1998, 86(11):2278-2324.
    [9]
    ABDELJABER O, AVCI O, KIRANYAZ S, et al.Real-Time Vibration-Basedstructural Damage Detection Using One-Dimensional Convolutional Neural Networks[J].Journal of Sound & Vibration, 2017, 388:154-170.
    [10]
    AVCI O, ABDELJABER O, KIRANYAZ S, et al.Structural Damage Detection in Real Time:Implementation of 1D Convolutional Neural Networks for SHM Applications[C]//Structural Health Monitoring & Damage Detection, Conference Proceedings of the Society for Experimental Mechanics Series.Garden Grove:2017:49-54.
    [11]
    AVCI O, ABDELJABER O, KIRANYAZ S, et al.Wireless and Real-Time Structural Damage Detection:A Novel Decentralized Method for Wireless Sensor Networks[J].Journal of Sound and Vibration, 2018, 424:158-172.
    [12]
    周飞燕, 金林鹏, 董军.卷积神经网络研究综述[J].计算机学报, 2017, 40(6):1230-1251.
    [13]
    YU F, KOLTUN V.Multi-Scale Context Aggregation by Dilated Convolutions[C]//International Conference on Learning Representation.San Juan:2016.
    [14]
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al.Deeplab:Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected Crfs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4):834-848.
    [15]
    潘辉, 郑威, 张莹莹.基于改进残差网络对心电信号的识别[J].数据采集与处理, 2020, 35(4):682-692.
    [16]
    HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al.Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors[J].Computer Science, 2012, 3(4):212-223.
    [17]
    LIN M, CHEN Q, YAN S.Network in Network[J].Computer Science, 2013, 4(5):1-10.
    [18]
    HE H, GARCIA E A.Learning from Imbalanced Data[J].IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9):1263-1284.
  • Relative Articles

    [1]WAN Neng, HUANG Minshui, ZHU Hongping. Research on Two-Stage Damage Identification of Steel Frame Based on CNN and CMCM[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 123-129. doi: 10.3724/j.gyjzG23072612
    [2]YANG Yinqiang, KANG Shuai, WANG Zifa, HE Zhongying, TENG Hui. Research on Damage Identification for Steel Frames Based on Convolutional Autoencoder and Correlation Function[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 78-86. doi: 10.3724/j.gyjzG23102311
    [3]LU Peng, ZHAO Tiansong, WANG Jian, CHANG Haosong, ZHENG Yun, LIU Xiaolan. A Method for Detecting Surface Corrosion Degree of Steel Structures Based on Computer Vision[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 133-139. doi: 10.3724/j.gyjzG23062009
    [4]DENG Fei, NIE Huanxin, SHEN Lianhong, LI Xu, YANG Lin. Research on Time-Difference and Fresnel Zone Inversion Method Based on Unstructured Grid in Bridge Inspection[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 219-225. doi: 10.13204/j.gyjzG21062704
    [5]JIANG Zhenyu, XIE Huibing. Research on Integration of Detection and Analysis for Rigid-Frame Bridges Based on BIM[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(2): 180-185. doi: 10.13204/j.gyjzG21041612
    [6]SHANG Renjie, ZENG Bin, RONG Hua, XU Qing, XU Man, XU Xiaoda. Research on Standardized Method of Stress Release Method for Measuring the Stress of Concrete[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 151-156. doi: 10.13204/j.gyjzG21102601
    [7]LI Shujin, XIONG Shuqi, FAN Peiran, WANG Gang. Application Research on Deep Convolutional Neural Network Considering Residual Learning in Structural Damage Identification[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 192-198. doi: 10.13204/j.gyjzg21101009
    [8]HUANG, Junbo, NING, Baokuan. ANALYSIS OF FREEZE-THAW DETERIORATION AND DAMAGE CHARACTERISTICS OF EXISTING CRACKED CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 142-147. doi: 10.13204/j.gyjz202001023
    [13]Li Hua, Huang Bencai. THE NUMERICAL SIMULATION OF INFLUENCE OF AN INTERNAL BLAST CAVITY EFFECT ON OVERPRESSURE FOR A STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(2): 48-53. doi: 10.13204/j.gyjz201202011
    [14]Zhu Fangzhi, Zhao Tiejun, Jiang Fuxiang, Ma Zhiming. EXPERIMENTAL STUDY AND ANALYSIS ON DETERIORATION MECHANISM OF DAMAGED CONCRETE INDUCED BY MECHANICAL LOAD[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(12): 67-71,95. doi: 10.13204/j.gyjz201212015
    [15]Zha Xiaoxiong, Ye Fuxiang. THE NONDESTRUCTIVE FAULT DETECTION OF THE SANDWICH PANEL BY WAVELET ANALYSIS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(3): 46-51. doi: 10.13204/j.gyjz201103008
    [16]Zhou Kui, Wang Qi, Liu Weidong, Zhang Jian. A SUMMARY REVIEW OF RECENT ADVANCES IN RESEARCH ON STRUCTURAL HEALTH MONITORING FOR CIVIL ENGINEERING INFRASTRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(3): 96-102. doi: 10.13204/j.gyjz200903026
    [17]Li Shuchun, Diao Bo, Ye Yinghua. DAMAGE SENSITIVITY ANALYSIS OF L-SHAPED SECTION BASED ON ORTHOGONAL DESIGN[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 5-9. doi: 10.13204/j.gyjz200705002
    [18]Lu Zhoudao, Yu Jiangtao, Li Cancan. DISCUSSION ON DETECTION OF DAMAGED CONCRETE AFTER FIRE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(1): 88-90. doi: 10.13204/j.gyjz200601026
    [19]Wang Jianmin, Li Hui, Chen Longzhu. APPLICATION OF RELATIVE DISPLACEMENT CHANGE IN STOREYS OF FRAMES(RDCSF) IN STRUCTURAL DAMAGE DETECTION[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(11): 47-49,46. doi: 10.13204/j.gyjz200511014
  • Cited by

    Periodical cited type(1)

    1. 虞建,张纯,李睿,江汇强. 基于多任务学习的结构损伤识别. 南昌大学学报(工科版). 2022(04): 366-372 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.5 %FULLTEXT: 9.5 %META: 88.4 %META: 88.4 %PDF: 2.1 %PDF: 2.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.5 %其他: 10.5 %China: 2.6 %China: 2.6 %上海: 1.6 %上海: 1.6 %东京: 2.6 %东京: 2.6 %东莞: 1.1 %东莞: 1.1 %兰州: 1.6 %兰州: 1.6 %北京: 4.2 %北京: 4.2 %南京: 0.5 %南京: 0.5 %南昌: 0.5 %南昌: 0.5 %合肥: 0.5 %合肥: 0.5 %大连: 0.5 %大连: 0.5 %宣城: 2.1 %宣城: 2.1 %宿州: 0.5 %宿州: 0.5 %常德: 0.5 %常德: 0.5 %张家口: 1.6 %张家口: 1.6 %怀化: 0.5 %怀化: 0.5 %成都: 0.5 %成都: 0.5 %扬州: 1.1 %扬州: 1.1 %晋城: 1.1 %晋城: 1.1 %朝阳: 0.5 %朝阳: 0.5 %杭州: 1.1 %杭州: 1.1 %武汉: 0.5 %武汉: 0.5 %法拉盛: 0.5 %法拉盛: 0.5 %济南: 0.5 %济南: 0.5 %深圳: 0.5 %深圳: 0.5 %漯河: 3.2 %漯河: 3.2 %益阳: 0.5 %益阳: 0.5 %石家庄: 0.5 %石家庄: 0.5 %福州: 1.6 %福州: 1.6 %芒廷维尤: 11.1 %芒廷维尤: 11.1 %芝加哥: 1.6 %芝加哥: 1.6 %茂名: 0.5 %茂名: 0.5 %西宁: 31.6 %西宁: 31.6 %西安: 0.5 %西安: 0.5 %贵阳: 0.5 %贵阳: 0.5 %运城: 6.8 %运城: 6.8 %邯郸: 1.1 %邯郸: 1.1 %郑州: 1.6 %郑州: 1.6 %阳泉: 1.1 %阳泉: 1.1 %其他China上海东京东莞兰州北京南京南昌合肥大连宣城宿州常德张家口怀化成都扬州晋城朝阳杭州武汉法拉盛济南深圳漯河益阳石家庄福州芒廷维尤芝加哥茂名西宁西安贵阳运城邯郸郑州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (166) PDF downloads(4) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return