Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SHI Xudong, ZHANG Bei, CUI Yidan. Experimental Research on Precompression Deformation Performance of Prestressed Concrete with Different Strength Grades Experiencing Given Ultralow Temperatures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(4): 180-187. doi: 10.3724/j.gyjzG23071204
Citation: Zhou Kui, Wang Qi, Liu Weidong, Zhang Jian. A SUMMARY REVIEW OF RECENT ADVANCES IN RESEARCH ON STRUCTURAL HEALTH MONITORING FOR CIVIL ENGINEERING INFRASTRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(3): 96-102. doi: 10.13204/j.gyjz200903026

A SUMMARY REVIEW OF RECENT ADVANCES IN RESEARCH ON STRUCTURAL HEALTH MONITORING FOR CIVIL ENGINEERING INFRASTRUCTURES

doi: 10.13204/j.gyjz200903026
  • Received Date: 2008-03-04
  • Publish Date: 2009-03-20
  • The structural health monitoring (SHM) with the characteristic of multidisciplinary is a powerful tool to support the operational safety and appropriate maintenance for civil engineering infrastructures. The recent advances in research on varieties of damage detection methods and wireless smart sensing technology are stated. The focuses of the online SHM are discussed and the potential challenges in the future to SHM and damage detection are addressed.
  • .Doebling S W, Farrar C R, Prime M B. A Summary Review of Vibration based Damage Identification method [J]. The Shock and Vibration Digest, 1998, 30(2): 91-105.
    [2] .Sohn H, Farrar C R, Hemez F M. A Review of Structural Health Monitoring Literature: 1996-2001 [R]. Los Alamos National Laboratory Report , LA-13976??MS, 2004.
    [3] .宗周红, 任伟新, 阮毅. 土木工程结构损伤诊断研究进展[J]. 土木工程学报, 2003, 36(5): 105-110.
    [4] .Rytter A. Vibration Based Inspection of Civil Engineering Structures[D]. [Ph. D. dissertation] :Aalborg University, Denmark, 1993.
    [5] .Farrar C R, Worden K. An Introduction to Structural Health Monitoring[J]. Phil.Trans. R. Soc. , 2007, 365: 303-315.
    [6] .Giraldo D F. A Structural Health Monitoring Frame??work for Civil Structures[D]: [Ph. D. dissertation]. Washington University, Saint Louis, Missouri, USA, 2006.
    [7] .Humar J , Bagchi A, Xu H. Performance of Vibration??based Techniques for the Identification of Structural Damage[J]. Structural Health Monitoring, 2006, 5(3): 215-241.
    [8] .Yan Y J, Cheng L, Wu Z Y, et al. Develoment in Vibration based Structural Damage Detection Technique[J]. Mechanical Systems and Signal Processing, 2007, 21: 2198-2211.
    [9] .Sophia H, Karolos H. Damage Detection Using Impulse Response[J]. Nonlinear Analysis, Theory, Methods Applications, 1997, 30(8): 4 757-4 764.
    [10] .Pandey A K, Biswas M, Samman M M. Damage Detection from Changes in Curvature Model Shapes [J]. Journal of Sound and Vibration, 1991, 145(2): 321-332.
    [11] .Pandey A K, Biswas M. Damage Detection in Structures Using Changes in Flexibility. Journal of Sound and Vibration, 1994, 169(1): 3-17.
    [12] .Bernal D. Load Vectors for Damage Localization [J]. Journal of Engineering Mechanics,ASCE, 2002, 128(1): 7-14.
    [13] .Gao Y, Spencer Jr B F, Bernal D. Experimental Verification of the Flexibility??based Damage Locating Vector Method [J]. Journal of Engineering Mechanics, ASCE, 2007, 133(10): 1043-1049.
    [14] .Hadjileontiadis L J, Douka E, Trochidis A. Fractal Dimension Analysis for Crack Identification in Beam Structures [J]. Mechanical Systems and Signal Processing, 2005, 19(3): 659-674.
    [15] .Zhang Z, Aktan A E. Application of Modal Flexibility and its Derivatives in Structural Identification[J]. Research in Nondestructive Evaluation, 1998, 10(1): 43-61.
    [16] .Wu D, Law S S. Damage localization in Plate Structures from Uniform Load Surface Curvature [J]. Journal of Sound and Vibration, 2004, 276: 227-244.
    [17] .Wang J, Qiao P. Improved Damage Detection for Beam-type Structures Using a Uniform Load Structure [J]. Structural Health monitoring, 2007, 6(2): 99-110.
    [18] .Yang J N, Lei Y, Lin S, et al. Hilbert-Huang Based Approach for Structural Damage Detection[J]. Journal of Engineering Mechanics, ASCE, 2004, 130(1): 85-95.
    [19] .Ma T W, Yang H T, Chang C C. Structural Damage Diagnosis and Assessment under Seismic Excitations [J]. Journal of Engineering Mechanics, ASCE, 2005, 131(10): 1036-1045.
    [20] .Park S, Bolt on R W, Stubbs N. Blind Test Results for Nondestructive Damage Detection in a Steel Frame [J]. Journal of Structural Engineering, ASCE, 2006, 132(5): 800-809.
    [21] .Jaishi B, Ren W X. Damage Detection by Finite Element Model Updating Using Modal Flexibility Residual [J]. Journal of Sound and Vibration, 2006, 290: 369-387.
    [22] .Yuen K, Beck J L, Kat afygiotis L S. Efficient Model Updating and Health Monitoring Methodology using Incomplete Modal Data Without Mode Matching [J]. Structural Control and Health Monitoring, 2006, 13: 91-107.
    [23] .Messina A, Williams E J, Contursi T. Structural Damage Detection by a Sensitivity and Statistical??basedMethod[J]. Journal of Sound and Vibration, 1998, 216(5): 791-808.
    [24] .SohnH, Czarnecki J A, Farrar C R. Structural Health Monitoring Using Statistical Process Control [J]. Journal of Structural Engineering, ASCE, 2000, 126(11): 1356-1363.
    [25] .Bodeux J B, Golinval J C. Application of ARMAV Models to the Identification and Damage Detection of Mechanical and Civil Engineering Structures[J]. Smart Materials and Structures, 2001, 10: 479-489.
    [26] .Lam H F, Katafygiotis L S, Mickleborough N C. Application of Statistical Model Updat ing Approach on Phase I of the IASC??ASCE Structural Health Monitoring Benchmark Study [J]. Journal of Engineering Mechanics, ASCE, 2004, 130(1): 34-48.
    [27] .Erdogan A, Mahmoud M R T, David S E, et al. Damage Pattern Recognition for Structural Health Monitoring Using Fuzzy Similarity Prescription[J]. Computer??Aided Civil and Infrastructure Engineering, 2006, 21: 549-560.
    [28] .Newland D E. Wavelet Analysis of Vibration. Part 1: theory [J]. Journal of Vibration and Acoustics, 1994, 116: 409-416.
    [29] .Staszewski W J. Structural and Mechanical Damage Detection Using Wavelets[J]. The Shock and Vibration Digest, 1998, 30 (6): 457-472.
    [30] .Wang Q, Deng X. Damage Detection with Spatial Wavelets [J]. Insternational Journal of Solids and Structures, 1999, 36: 3443-3468.
    [31] .李宏男, 孙鸿敏. 小波分析在土木工程领域中的应用[J]. 世界地震工程, 2003, 19(2): 16-22.
    [32] .Sun Z, Chang C C. Structural Damage Assessment Based on Wavelet Packet Transform[J]. Journal of Structural Engineering, ASCE, 2002, 128(10): 1354-1361.
    [33] .Barai S V, Pandey P C. Time delay Neural Networks in Damage Detection of Railway Bridges [J]. Advances in Engineering Software, 1997, 28: 1-10.
    [ 34].Masri S F, Smyth A W, Chassiakos A G, et al. Application of Nueural Networks for Detection of Changes in Nonlinear Systems[J]. Journal of Engineering Mechani cs,ASCE, 2000, 126(7): 666-676.
    [35] .Fang X, Luo H, Tang J. Structural Damage Detection Using Neural Network with Learning Rate Improvement [J]. Computers and Structures, 2005, 83: 2150-2161.
    [36] . Adeli H, Jiang X. Dynamic Fuzzy Wavelet Neural NetworkModel for Structural System Identification[J]. Journal of Structural Engineering, ASCE, 2006, 132(1): 102-111.
    [37] .Perera R, Torres R. Structural Damage Detection Via Modal Data with Genetic Algorithms[J]. Journal of Structural Engineering, ASCE, 2006, 132(9): 1491-1501.
    [38] .Sanayei M, Onipede O. Damage Assessment of Structure Using Static Test Data[J]. AIAA Journal, 1991, 29(7): 1174-1179.
    [39] .banan Mo R, Banan Ma R, Hjelmstad K D. Parameter Estimation of Structures from Static Response. Ⅰ: Computational aspects [J]. Journal of Structural Engineering, 1994, 120(11): 3243-3258.
    [40] .Hjelmstad K D, Shin S. Damage Detection and Assessment of Structures from Static Response [J]. Journalf of Engineering Mechanics, 1997, 123(6): 568-576.
    [41] .Sanayei M, Saletnik M J. Parameter Estimation of Structures from Static Strain Measurements. I: Formulation[J]. Journal of Structural Engineering, 1996, 122(5), 555-562.
    [42] .Sanayei M, Saletnik M J. Parameter Estimation of Structures from Static Strain Measurements. Ⅱ: Error Sensitivity Analysis[J]. Journal of Structural Engineering, 1996, 122(5): 563-572.
    [43] .Liu P L, Chian C C. Parameteric Identification of Truss Structures Using Static Strains[J]. Journal of Engineering Mechanics, 1997, 123(7): 927-933.
    [44] .Chou J H, Ghaboussi J. Genetic Algorithm in Structural Damage Detection[J]. Computers Structures, 2001, 79(14): 1335-1353.
    [45] .ShentonH W, Hu X. Damage Identification Based on Dead Load Redistribution: Methodology [J]. Journal of Structural Engineering, ASCE, 2006, 132(8): 1254-1263.
    [46] .Park H S, Lee H M, Adeli H. A New Approach for Health Monitoring of Structures: Terrestrial Laser Scanning [J]. Computer Aided Civil and Infrastructure Engineering, 2007, 22: 19-30.
    [47] .Shah S P, Popovics J S, Subramaniam K V, et al. New Directions in Concrete Health Monitoring Technology [J]. Journal of Engineering Mechanics, ASCE, 2000, 126(7): 754-760.
    [48] .Victor G, Adrian C. Embedded Nondestructive Evaluation for Structural Health Monitoring, Damage Detection, and Failure Prevention[J]. The Shock and Vibration Digest, 2005, 37 (2): 83-105.
    [49] .Raghavan A, Cesnik C E S. Review of Guided??wave Structural Health Monitoring[J]. The Shock and Vibration Digest, 2007, 39 (2): 91-114.
    [50] .Gao Y, Spencer Jr B F, Ruiz Sandoval M E. Distributed COmputing Strategy for Structural Health Monitoring[J]. Structural COntrol and Health Monitoring, 2006, 13: 488- 507.
    [51] .Ruiz??sandoval M, nagyama T, Spencer Jr B F. Sensor Development Using Berkeley Mote Platform [J]. Journal of Earthquake Engineering, 2006, 10(2): 289-309.
    [52] .Spencer Jr B F, Ruiz Sandoval M E, Kurata N. Smart Sensing Technology: Opportunit ies and Challenges[J]. Structural Control and Health Monitoring, 2004, 11: 349-368.
    [53] .Lynch J P, Loh K J. A Summary Review of Wireless Sensors and Sensor Networks for St ructural Health Monit oring[J]. The Shock and Vibration Digest, 2006, 38(2): 91-128.
    [54] .Gu H, Zhao Y, Wang M L. A Wireless Smart PVDF Sensor for Structural Health Monitoring [J]. Structural Control and Health Monitoring, 2005, 12: 329-343.
    [55] .Sodano H A, Inman D J, Part G. A Review of Power Harvesting from Vibration Using Piezoelectric Materials[J]. The Shock and Vibration Digest, 2004, 36(3): 197-205.
    [56] .Farrar C R, Lieven N A J. Damage Prognosis: the Future of Structural Health Monitoring[J]. Phil.Trans. R. Soc., 2007, 365: 623-632.
  • Relative Articles

    [1]YAN Fengjie, DU Baoshuai, LI Bofan, ZHENG Jie, WANG Xiantie, LIANG Wanggeng. Research on Bending Performance of Connection Joints of Concrete-Filled Double-Skin Steel Tube Members with Through Flange Stiffeners[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 23-38. doi: 10.3724/j.gyjzG23072403
    [2]WANG Qing-he, LIU Yu-ting, XU Di-shun, ZHANG Li-jia, ZHOU Zhang-qun. Research on Flexural Properties of Reinforced Truss Spontaneous-Combustion Coal Gangue Concrete Composite Slabs[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 67-73,93. doi: 10.13204/j.gyjzG22032906
    [3]DU Xinxi, LI Changzheng, YUAN Huanxin, ZHANG Fan, GAN Shixin. Research on Flexural Performances of Sinusoidal Corrugated Steel-Reinforced Concrete Beams[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 158-163,131. doi: 10.13204/j.gyjzG21042009
    [4]WANG Xinling, BAI Yan, ZHU Juntao. EXPERIMENTAL STUDY ON FLEXURAL PROPERTIES OF REINFORCED CONCRETE BEAMS WITH REBAR HRB600 UNDER SERVICE CONDITIONS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 20-25. doi: 10.13204/j.gyjz201904280010
    [5]ZHANG Jianwei, GUO Wang, FENG Caojie, CAO Wanlin. FLEXURAL BEHAVIOR OF STEEL FIBER REINFORCED HIGH-STRENGTH CONCRETE BEAMS WITH HRB600 STEEL BARS UNDER MONOTONIC LOADING[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 49-54. doi: 10.13204/j.gyjzG19082704
    [6]CHEN Hua, CHEN Yaojia, XIE Bin, DENG Langni. STUDY OF BENDING BEHAVIOR OF REINFORCED CONCRETE BEAMS STRENGTHENED WITH NEAR-SURFACE-MOUNTED PRESTRESSED CFRP RODS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 168-173. doi: 10.13204/j.gyjz201908210007
    [7]GE Wenjie, YU Jiamin, GAO Peiqi, SONG Wanrong, QIU Shengwei, CHEN Qiubing, JI Suidong. EXPERIMENTAL RESEARCH ON THE FLEXURAL BEHAVIOR OF FRP REINFORCED ECC-CONCRETE COMPOSITE BEAMS STRENGTHENED WITH CARBON FIBER SHEET[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(2): 163-168. doi: 10.13204/j.gyjz202002025
    [8]Li Binbin, Wang Sheliang. EXPERIMENTAL STUDY ON FLEXURAL PERFORMANCE OF RECYCLED AGGREGATE CONCRETE BEAMS UNDER THE INFLUENCE OF SEVERAL FACTORS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(09): 114-118.
    [9]Zhang Yi, Zhao Shenghua, Chen Xing. EXPERIMENTAL RESEARCH ON THE FLEXURAL BEHAVIOR OF RECYCLED CONCRETE T-SHAPED CROSS-SECTION SUPERPOSED BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(05): 52-55.
    [10]Wang Dongyan, Wu Yuegang, Yang Zhenkun, Wang Mengmeng, Yuan Quan, Liao Juan, Wei Yongbin. EXPERIMENTAL STUDY ON BENDING BEHAVIOR OF C80 CONCRETE BEAMS AT EARLY AGE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 82-87. doi: 10.13204/j.gyjz201312015
    [11]Chen Zongping, Chen Yuliang, Qin Wenyue, Xue Jianyang, Qi Cheng. TEST OF FLEXURAL BEHAVIOR AND ULTIMATE CAPACITY CALCULATION OF STEEL REINFORCED RECYCLED AGGREGATE CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 11-16,29. doi: 10.13204/j.gyjz201309002
    [12]Xu Ming, Pang Fangteng, Chen Zhongfan. FLEXURAL BEHAVIOR OF REINFORCED CONCRETE BEAMS STRENGTHENED WITH CFRP SHEETS BONDED WITH INORGANIC MATRIX[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 156-159. doi: 10.13204/j.gyjz201304032
    [13]He Yuanye, Liu Qing, Wang Kexin. EXPERIMENTAL STUDY ON BENDING BEHAVIOR OF FRP STRENGTHENED RC BEAMS IN XINJIANG NATURAL CONDITIONS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(3): 76-79,112. doi: 10.13204/j.gyjz201203016
    [14]Ge Wenjie, Zhang Jiwen, Dai Hang, Tu Yongming. EXPERIMENTAL STUDY ON THE FLEXURAL BEHAVIOR OF CONCRETE BEAM REINFORCED WITH HRBF400 STEEL BARS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(6): 71-74. doi: 10.13204/j.gyjz201106015
    [15]Wu Erjun, Yan Wei. STUDY ON MAGNIFICATION COEFFICIENT OF BEAM MOMENT IN REINFORCED CONCRETE FRAME[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(12): 39-42. doi: 10.13204/j.gyjz201012011
    [16]Tu Yongming, Zhang Jiwen, Qian Yang, Chen Jie. EXPERIMENTAL STUDY ON THE FLEXURAL BEHAVIOR OF CONCRETE BEAMS PRESTRESSED WITH AFRP TENDONS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 72-76. doi: 10.13204/j.gyjz200904017
    [17]Zhao Jinjie, Zhang Qinxi, Yang Yongxin, Yang Meng, Lian Jie. EXPERIMENTAL INVESTIGATION OF FLEXURAL BEARING CAPACITY OF CONCRETE BEAMS WITH HRBF500 BARS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(3): 52-55. doi: 10.13204/j.gyjz200903016
    [18]Liu Xiao, Wang Bing, Wang Lianguang. THE THEORETIC RESEARCH ON FLEXURAL BEARING CAPACITY OF CONCRETE-FILLED RECTANGULAR STEEL TUBE WITH H-SHAPED SECTION OR CROSS STEEL SECTION[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 95-97. doi: 10.13204/j.gyjz200807024
    [19]Ouyang Yu, Wang Peng, Zhang Yunchao. CALCULATION AND ANALYSIS OF FLEXURAL AND SHEAR CAPACITY OF RC BEAMS STRENGTHENED WITH BFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 24-27. doi: 10.13204/j.gyjz200706007
    [20]Wang Gang, Qian Jiaru, Lin Liyan. STUDY ON BENDING BEHAVIOR OF STEEL TUBE REINFORCED CONCRETE MEMBERS[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(2): 68-71. doi: 10.13204/j.gyjz200602020
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.0 %FULLTEXT: 23.0 %META: 77.0 %META: 77.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.0 %其他: 17.0 %北京: 1.0 %北京: 1.0 %十堰: 1.0 %十堰: 1.0 %台州: 1.0 %台州: 1.0 %宁德: 3.0 %宁德: 3.0 %宣城: 1.0 %宣城: 1.0 %常德: 2.0 %常德: 2.0 %张家口: 3.0 %张家口: 3.0 %晋城: 1.0 %晋城: 1.0 %漯河: 1.0 %漯河: 1.0 %芒廷维尤: 23.0 %芒廷维尤: 23.0 %西宁: 33.0 %西宁: 33.0 %西安: 1.0 %西安: 1.0 %贵阳: 1.0 %贵阳: 1.0 %运城: 7.0 %运城: 7.0 %郑州: 1.0 %郑州: 1.0 %重庆: 3.0 %重庆: 3.0 %其他北京十堰台州宁德宣城常德张家口晋城漯河芒廷维尤西宁西安贵阳运城郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (179) PDF downloads(163) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return