Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YANG Yuan, CUI Qiandao, LIAN Jijian, LIU Hongbo, ZHOU Guangen, CHEN Zhihua. LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 203-208. doi: 10.13204/j.gyjzG20092308
Citation: LU Jiaqi, YAO Zhidong. A CONCRETE CRACK RECOGNITION METHOD BASED ON PROGRESSIVE CASCADE CONVOLUTION NEURAL NETWORK[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 30-36. doi: 10.13204/j.gyjzG20112504

A CONCRETE CRACK RECOGNITION METHOD BASED ON PROGRESSIVE CASCADE CONVOLUTION NEURAL NETWORK

doi: 10.13204/j.gyjzG20112504
  • Received Date: 2020-11-25
    Available Online: 2021-09-16
  • Publish Date: 2021-09-16
  • Convolution neural network method of deep learning is a high robust method for image crack recognition at present, which is mainly divided into sliding window method and image segmentation method. Sliding window method has the problems of low precision of later threshold segmentation of cracks; global image segmentation method has the problem of serious unbalanced sample distribution between crack region and background region,which will affect the accuracy of crack segmentation. The method based on progressive cascade convolution neural network was used to detect concrete surface cracks:firstly, the fully convolution neural network was used to judge whether there were cracks in all the dense overlapped window areas in the image only once, and then the window blocks with cracks were extracted as the region of interest, and then the light-weight U-Net image segmentation network was used to act on the region of interest to extract the crack area accurately. Experimental results showed that the proposed progressive cascade convolution neural network was superior to sliding window method and global image segmentation method, and had a reliable application prospect.
  • [1]
    FENG D, FENG M Q. Computer Vision for SHM of Civil Infrastructure:from Dynamic Response Measurement to Damage Detection:A Review[J]. Engineering Structures, 2018, 156:105-117.
    [2]
    KONG X, LI J. Non-Contact Fatigue Crack Detection in Civil Infrastructure Throughimage Overlapping and Crack Breathing Sensing[J]. Automation in Construction, 2019, 99:125-139.
    [3]
    OLIVEIRA H, CORREIA P L. Automatic Road Crack Segmentation Using Entropy and Image Dynamic Thresholding[C]//Proceedings of the 2009 17th European Signal Processing Conference. Glasgow, U K:2009:622-626.
    [4]
    QUINTANA M, TORRES J, MENéNDEZ J M. A Simplified Computer Vision System for Road Surface Inspection and Maintenance[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(3):608-619.
    [5]
    AYENU-PRAH A, ATTOH-OKINE N.Evaluating Pavement Cracks with Bidimensional Empirical Mode Decomposition[J]. EURASIP Journal on Advances in Signal Processing, 2008(1). DOI: 10.1155/2008/861701.
    [6]
    ACHARYA T, TSAI P S. Edge-Detection Based Noise Removal Algorithm:US 6229578 B1[P]. 1997-12-08.
    [7]
    LI Q Q, LIU X L.Novel Approach to Pavement Image Segmentation Based on Neighboring Difference Histogram Method[C]//Proceedings of the 2008 Congress on Image and Signal Processing.Sanya:2008:792-796.
    [8]
    JIN H Z, WAN F, YE Z W. Pavement Crack Detection Fused HOG and Watershed Algorithm of Range image[J]. Journal of Huazhong Normal University(Natural Sciences), 2017, 51(5):715-722.
    [9]
    徐洋. 基于计算机视觉的桥梁结构局部损伤识别方法研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
    [10]
    李良福, 马卫飞, 李丽, 等. 基于深度学习的桥梁裂缝检测算法研究[J]. 自动化学报, 2019, 45(9):1727-1742.
    [11]
    王森, 伍星, 张印辉, 等. 基于深度学习的全卷积网络图像裂纹检测[J]. 计算机辅助设计与图形学学报, 2018, 30(5):859-867.
    [12]
    曹锦纲, 杨国田, 杨锡运, 等. 基于注意力机制的深度学习路面裂缝检测[J]. 计算机辅助设计与图形学报, 2020, 32(8):1324-1333.
    [13]
    任秋兵, 李明超, 沈扬, 等.水工混凝土裂缝像素级形态分割与特征量化方法研究[J]. 水力发电学报, 2021, 40(2):234-246.
    [14]
    OTSU N. A Threshold Selection Method from Gray-Level Histogram[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66.
    [15]
    王超, 贾贺, 张社荣, 等. 基于图像的混凝土表面裂缝量化高效识别方法[J]. 水力发电学报, 2021, 40(3):134-144.
    [16]
    GONZALEZ R C, WOODS R E, EDDINS S L. 数字图像处理的MATLAB实现[M]. 阮秋琦, 译.北京:清华大学出版社, 2013.
    [17]
    李刚, 贺拴海, 巨永锋, 等. 远距离混凝土桥梁结构表面裂缝精确提取算法[J]. 中国公路学报, 2013, 26(4):102-108.
    [18]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for Dense Object Detection[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017:2980-2988.
    [19]
    RONNEBERGER O, FISCHER P, BROX T. U-Net:Convolutional Networks for Biomedical Image Segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.2015:234-241.
    [20]
    SERMANET P, EIGEN D, ZHANG X, et al. OverFeat:Integrated Recognition, Localization and Detection Using Convolutional Networks[C]//International Conference on Learning Representations.2014:1-16.
  • Relative Articles

    [1]JIN Nan, WU Yongjingbang, SHI Zhongqi, YUE Qingrui, ZHENG Zexing. Research on Methods for Detection and Localization of Color Steel Tile Buildings[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 58-64. doi: 10.3724/j.gyjzG23120810
    [2]WANG Wei, MI Qingren, XIAO Yun, YANG Xincong. Research on the Detection Method of Hollowing and Missing for Building Exterior Walls Based on Visible and Infrared Image Fusion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 51-59. doi: 10.13204/j.gyjzG22112305
    [3]ZHANG Haoyu, DING Yong, LI Denghua. A Structural Surface Crack Detection Method Based on 3D Reconstruction[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 60-67. doi: 10.13204/j.gyjzG22102611
    [4]FAN Cunjun, JIN Songyan, JIN Nan, SHI Zhongqi, WU Yongjingbang, HAO Xintian. Crack Recognition and Quantitative Analysis Based on Deep Learning[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 126-132. doi: 10.3724/j.gyjzG24061802
    [5]YANG Yinqiang, KANG Shuai, WANG Zifa, HE Zhongying, TENG Hui. Research on Damage Identification for Steel Frames Based on Convolutional Autoencoder and Correlation Function[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 78-86. doi: 10.3724/j.gyjzG23102311
    [6]FAN Lijun. Identification of Crack in Concrete Structures Based on MobileNetV2 of Lightweight Convolutional Network[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 231-236. doi: 10.13204/j.gyjzG23021618
    [7]LI Shujin, XIONG Shuqi, FAN Peiran, WANG Gang. Application Research on Deep Convolutional Neural Network Considering Residual Learning in Structural Damage Identification[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 192-198. doi: 10.13204/j.gyjzg21101009
    [8]LI Rui, ZHANG Chun. RESEARCH ON STRUCTURAL DAMAGE DETECTION METHOD BASED ON ONE-DIMENSIONAL DILATED CONVOLUTION NEURAL NETWORK[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 177-183. doi: 10.13204/j.gyjzg20103011
    [9]ZHOU Yiyi, WANG Jin, LI Jiannan, JIAN Huicheng, ZHOU Qiang, HU Jiayi. STRUCTURAL LAYOUT AND SEISMIC ANALYSIS OF THE SPHERICAL EXHIBITION CENTER IN SUZHOU HIGH SPEED RAILWAY NEW CITY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 204-212. doi: 10.13204/j.gyjzG20102206
    [10]HU Weibing, YANG Jia, WANG Long, HOU Yanfang. STUDY ON DAMAGE DETECTION AND QUANTIFICATION OF ANCIENT BUILDING TIMBER STRUCTURES BASED ON LAMINATION THEORY AND BP NEURAL NETWORKS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 71-77,111. doi: 10.13204/j.gyjzG20020501
    [11]Guo Man-liang, Huang Chao-jie, Ling Jiang, Xiao Ming. INTRODUCTION TO PROPOSALS FOR INTERNATIONAL DESIGN COMPETITION FOR SHENZHEN UNIVERSIDE SPORTS CENTRE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(10): 113-119,82. doi: 10.13204/j.gyjz201210024
    [12]Chen Zhihua, Weng Kai, Liu Hongbo, Yan Renzhang, Bu Yidu. THE RESEARCH STATUS AND ENGINEERING APPLICATION OF STAINLESS STEEL ON SPACE GRID STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 55-62,54. doi: 10.13204/j.gyjz2011205009
    [13]Wang Cheng Zhang Yigang Tan Zhengguang, . ANALYSIS OF LOADING PROCESS OF THE IRSSP AFFECTED BY WEB MEMBER[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 89-92. doi: 10.13204/j.gyjz200811022
    [14]Hong Jinxiang, Huang Wei, Miao Changwen. STUDY ON PREDICTION OF CONCRETE STRENGTH USING WAVELET NEURAL NETWORK[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 47-49. doi: 10.13204/j.gyjz200407013
  • Cited by

    Periodical cited type(3)

    1. 周建. 基于长短期记忆网络的田径运动员专项体能训练即时数据采集. 兰州文理学院学报(自然科学版). 2023(03): 107-112 .
    2. 李红民,王健,闫凯. 基于多传感器数据融合的空间结构健康状态评估方法. 建筑结构学报. 2023(S1): 364-371 .
    3. 王健,李红民,闫凯. 基于突变理论的空间钢结构稳定性研究. 山东建筑大学学报. 2023(05): 33-39 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.8 %FULLTEXT: 8.8 %META: 89.2 %META: 89.2 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.9 %其他: 5.9 %其他: 0.5 %其他: 0.5 %[]: 1.0 %[]: 1.0 %临汾: 0.5 %临汾: 0.5 %北京: 10.8 %北京: 10.8 %南京: 1.5 %南京: 1.5 %台州: 0.5 %台州: 0.5 %合肥: 2.0 %合肥: 2.0 %咸阳: 0.5 %咸阳: 0.5 %大连: 0.5 %大连: 0.5 %天津: 1.0 %天津: 1.0 %宣城: 1.0 %宣城: 1.0 %常州: 1.0 %常州: 1.0 %常德: 0.5 %常德: 0.5 %开封: 0.5 %开封: 0.5 %张家口: 2.9 %张家口: 2.9 %扬州: 0.5 %扬州: 0.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %枣庄: 0.5 %枣庄: 0.5 %济南: 1.5 %济南: 1.5 %湖州: 0.5 %湖州: 0.5 %漯河: 1.5 %漯河: 1.5 %芒廷维尤: 31.9 %芒廷维尤: 31.9 %芝加哥: 0.5 %芝加哥: 0.5 %莫斯科: 1.0 %莫斯科: 1.0 %西宁: 16.7 %西宁: 16.7 %西安: 0.5 %西安: 0.5 %贵阳: 1.5 %贵阳: 1.5 %运城: 6.9 %运城: 6.9 %邯郸: 0.5 %邯郸: 0.5 %郑州: 2.0 %郑州: 2.0 %重庆: 0.5 %重庆: 0.5 %长沙: 1.5 %长沙: 1.5 %青岛: 1.0 %青岛: 1.0 %其他其他[]临汾北京南京台州合肥咸阳大连天津宣城常州常德开封张家口扬州晋城朝阳枣庄济南湖州漯河芒廷维尤芝加哥莫斯科西宁西安贵阳运城邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (254) PDF downloads(8) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return