Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Zhenlin, CHENG Yongfeng, LU Zhicheng, ZHANG Xiaojun, ZHU Zhubing, ZHANG Shujun. SHAKING TABLE TESTS OF ULTRA-HIGH-VOLTAGE TRANSFORMER MODELS WITH NONLINEAR VIBRATION ISOLATION DEVICES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 19-24. doi: 10.13204/j.gyjzG21052708
Citation: FENG Peng, BAO Charun, ZHANG Daobo, YUE Qingrui, QI Junfeng, ZUO Yang. CONSTRUCTION TECHNOLOGY FOR LUNAR BASES USING LUNAR IN-SITU RESOURCES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 169-178. doi: 10.13204/j.gyjzG20090813

CONSTRUCTION TECHNOLOGY FOR LUNAR BASES USING LUNAR IN-SITU RESOURCES

doi: 10.13204/j.gyjzG20090813
  • Received Date: 2020-09-08
    Available Online: 2021-04-30
  • The construction of lunar bases is of great significance for long-term human presence on the moon. The environmental and resource conditions regarding lunar base construction were reviewed and researched. It was demonstrated that the in-situ construction using lunar regolith was a practical and feasible construction scheme considering its various advantages including construction convenience and cost efficiency. The existing studies on construction technology based on lunar regolith could be categorized into two groups: downward excavation and upward construction. In particular, the upward construction employed the different techniques including lunar regolith concrete, lunar regolith sintering, lunar regolith bonding and regolith bags. Based on the review and analysis, a novel lunar in-situ construction scheme was proposed, which comprehensively used the techniques including 3D printed lunar regolith concrete and regolith bags, so as to realize the automatic construction using in-situ resources. It provided a new technical path for lunar base construction.
  • 张弛. 冷战中的美苏载人登月竞赛[D]. 西安:陕西师范大学, 2011.
    COMSTOCK D, PETRO A. NASA's Centennial Challenges Contributions to ISRU[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2009.DOI: 10.2514/6.2009-1205.
    鲁暘筱懿, 平劲松, SHEVCHENKO V. 俄罗斯"月球-全球"和"月球-资源"探月任务[J].航天器工程, 2013, 22(4):103-108.
    国务院新闻办公室.《2006年中国的航天》白皮书[J]. 中国航天, 2006(11):10-15.
    欧阳自远. 嫦娥四号月背软着陆的重大意义[J]. 世界科学, 2019(3):28-30.
    周文. "嫦娥"回家创造中国五项首次[J].人民周刊,2020(24):10.
    于登云, 葛之江, 王乃东,等. 月球基地结构形式设想[J]. 宇航学报, 2012, 33(12):1840-1844.
    丁烈云,徐捷,骆汉宾,等.月面建造工程的挑战与研究进展[J].载人航天,2019,25(3):277-285.
    BENAROYA H, BERNOLD L. Engineering of Lunar Bases[J]. Acta Astronautica, 2008, 62(4/5):277-299.
    MOTTAGHI S, BENAROYA H. Design of a Lunar Surface Structure I:Design Configuration and Thermal Analysis[J]. Journal of Aerospace Engineering, 2014, 28(1).DOI: 10.1061/(ASCE)AS.1943-5525.0000382.
    VRAKKING V R, GUO J, SCHUBERT D. Design of a Deployable Structure for a Lunar Greenhouse Module[C]//43rd International Conference on Environmental Systems. 2013.
    CHANDRAN S B R, RAJESH S R, ABRAHAM A, et al. SEP Events and Wake Region Lunar Dust Charging with Grain Radii[J]. Advances in Space Research, 2017, 59(1):483-489.
    CRISWELL D R. Lunar Dust Motion[C]//Lunar and Planetary Science Conference Proceedings. 1972.
    WILLIAMS J P, PAIGE D A, GREENHAGEN B T, et al. The Global Surface Temperatures of the Moon as Measured by the Diviner Lunar Radiometer Experiment[J]. Icarus, 2017, 283:300-325.
    RUESS F, ZACNY K, BRAUN B. Lunar In-Situ Resource Utilization:Regolith Bags Automated Filling Technology[C]//AIAA SPACE 2008 Conference & Exposition. 2008.
    BENAROYA H, INDYK S, MOTTAGHI S. Advanced Systems Concept for Autonomous Construction and Self-Repair of Lunar Surface ISRU Structures[G]//Moon. Heidelberg:Springer, Cham, 2012:641-660.
    欧阳自远. 月球科学概论[M]. 北京:中国宇航出版社, 2005.
    KEIHM S J, PETERS K, LANGSETH M G, et al. Apollo 15 Measurement of Lunar Surface Brightness Temperatures Thermal Conductivity of the Upper 11/2 meters of regolith[J]. Earth and Planetary Science Letters, 1973, 19(3):337-351.
    HEMINGWAY B S, ROBIE R A, WILSON W H. Specific Heats of Lunar Soils, Basalt, and Breccias from the Apollo 14, 15, and 16 Landing Sites, Between 90 and 350 K[C]//Lunar and Planetary Science Conference Proceedings. 1973.
    LOGAN L M, HUNT G R, BALSAMO S R, et al. Midinfrared Emission Spectra of Apollo 14 and 15 Soils and Remote Compositional Mapping of the Moon[C]//Lunar and Planetary Science Conference Proceedings. 1972.
    VANIMAN D, REEDY R, HEIKEN G, et al. The Lunar Environment[G]. BENAROYA H. Building Habitats on the Moon:Engineering Approaches to Lunar Settlements. Heidelberg:Springer, Cham,2018:42-84.https://doi.org/10.1007/978-3-319-68244-0.
    JOLLY S D, HAPPEL J, STURE S. Design and Construction of Shielded Lunar Outpost[J]. Journal of Aerospace Engineering, 1994, 7(4):417-434.
    BOLDOGHY B, KUMMERT J, VARGA T, et al. Practical Realization of Covering Lunar Buildings for Ensure Levelled Temperature Environment[C]//Lunar and Planetary Science Conference. 2007:1380-1381.
    TOUTANJI H, GLENN-LOPER B, SCHRAYSHUEN B. Strength and Durability Performance of Waterless Lunar Concrete[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005:1436-1444.
    ANAND M. Lunar Water:a Brief Review[J]. Earth, Moon, and Planets, 2010, 107(1):65-73.
    FELDMAN W C, LAWRENCE D J, ELPHIC R C, et al. Polar Hydrogen Deposits on the Moon[J]. Journal of Geophysical Research:Planets, 2000, 105(E2):4175-4195.
    BOYCE J W, LIU Y, ROSSMAN G R, et al. Lunar Apatite with Terrestrial Volatile Abundances[J]. Nature, 2010, 466(7305):466-469.
    RUESS F, SCHAENZLIN J, BENAROYA H. Structural Design of a Lunar Habitat[J]. Journal of Aerospace Engineering, 2006, 19(3):133-157.
    CESARETTI G, DINI E, DE KESTELIER X, et al. Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology[J]. Acta Astronautica, 2014, 93:430-450.
    HOU X, DING T, CHEN T, et al. Constitutive Properties of Irregularly Shaped Lunar Soil Simulant Particles[J]. Powder Technology, 2019, 346:137-149.
    HORZ F. Lava Tubes-Potential Shelters for Habitats[C]//Lunar Bases and Space Activities of the 21st Century. 1985:405-412.
    ANGELIS D G, WILSON J W, CLOWDSLEY M S, et al. Lunar Lava Tube Radiation Safety Analysis[J]. Journal of Radiation Research, 2002, 43(S):S41-S45.
    TÓTH A R, BAGI K. Analysis of a Lunar Base Structure Using the Discrete-Element Method[J]. Journal of Aerospace Engineering, 2010, 24(3):397-401.
    BERNOLD L E. Experimental Studies on Mechanics of Lunar Excavation[J]. Journal of Aerospace Engineering, 1991, 4(1):9-22.
    DICK R D, FOURNEY W L, GOODINGS D J, et al. Use of Explosives on the Moon[J]. Journal of Aerospace Engineering, 1992, 5(1):59-69.
    NEKOOVAGHT P, GHARIB N, HASSANI F. Microwave Assisted Rock Breakage for Space Mining[C]//ASCE's Aerospace Division, the 14th Earth and Space Conference. 2014.
    COVEY S D. An Electromagnetic Asteroid Regolith Excavator:Preliminary Results[C]//Earth and Space 2016:Engineering for Extreme Environments. Reston, VA:American Society of Civil Engineers, 2016:523-529.
    WANGLER T, ROUSSEL N, BOS F P, et al. Digital Concrete:A Review[J]. Cement and Concrete Research, 2019, 123:105780.
    WANGLER T, LLORET E, REITER L, et al. Digital Concrete:Opportunities and Challenges[J]. RILEM Technical Letters, 2016(1):67-75.
    SHAKOR P, SANJAYAN J, NAZARI A, et al. Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing[J]. Construction and Building Materials, 2017, 138:398-409.
    蔺喜强, 张涛, 霍亮, 等. 水泥基建筑3D打印材料的制备及应用研究[J].混凝土, 2016(6):141-144.
    GRUGEL R N, TOUTANJI H. Sulfur "Concrete" for Lunar Applications-Sublimation Concerns[J]. Advances in Space Research, 2008, 41(1):103-112.
    FISKE M R, MCGREGOR W, POPE R, et al. Lunar In-Situ Materials:Based Surface Structure Technology Development Efforts at NASA/MSFC[C]//AIP Conference Proceedings. 2007, 880(1):871-877.
    郭晓潞,熊归砚,王志浩.地聚合物基月球混凝土及其3D打印原位建造设想[J].航天器环境工程,2020,37(3):209-217.
    KHOSHNEVIS B, BODIFORD M, BURKS K, et al. Lunar Contour Crafting:A Novel Technique for ISRU-Based Habitat Development[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005:538-550.
    KHOSHNEVIS B, CARLSON A, LEACH N, et al. Contour Crafting Simulation Plan for Lunar Settlement Infrastructure Build-Up[C]//Earth and Space 2012:Engineering, Science, Construction, and Operations in Challenging Environments.2012:1458-1467.
    LLORET F E, REITER L, WANGLER T, et al. Smart Dynamic Casting:Slipforming with Flexible Formwork-Inline Measurement and Control[C]//HPC/CIC Tromsø 2017. 2017:27.DOI: 10.3929/ethz-b-000219663.
    DUBALLET R, DIRRENBERGER J, BAVEREL O. Space Truss Masonry Walls with Robotic Mortar Extrusion[C]//Proceedings of IASS Annual Symposia. International Association for Shell and Spatial Structures (IASS). 2018. 2018:1-7.
    HACK N, WANGLER T, MATA-FALCÓN J, et al. Mesh Mould:An on Site, Robotically Fabricated, Functional Formwork[C]//Second Concrete Innovation Conference (2nd CIC). 2017.
    GOSSELIN C, DUBALLET R, ROUX P, et al. Large-Scale 3D Printing of Ultra-High Performance Concrete:A New Processing Route for Architects and Builders[J]. Materials & Design, 2016, 100:102-109.
    DUBALLET R, GOSSELIN C, ROUX P. Additive Manufacturing and Multi-Objective Optimization of Graded Polystyrene Aggregate Concrete Structures[G]//Modelling Behaviour. Cham:Springer-Verlag, 2015:225-235.
    LIN T D. Lunar Concrete Made with the Dry-Mix/Steam-Injection Method[J]. SpaceV, 1996(1):552-599.
    SANJAYAN J G, NEMATOLLAHI B. 3D Concrete Printing Technology[M]. Oxford:Butterworth-Heinemann, 2019:1-11.
    ASPRONE D, AURICCHIO F, MENNA C, et al. 3D Printing of Reinforced Concrete Elements:Technology and Design Approach[J]. Construction and Building Materials, 2018, 165:218-231.
    BOS F P, AHMED Z Y, WOLFS R J M, et al. 3D Printing Concrete with Reinforcement[C]//High Tech Concrete:Where Technology and Engineering Meet. Cham:Springer-Verlag, 2018:2484-2493.
    LIM S, BUSWELL R A, LE T T, et al. Developments in Construction-Scale Additive Manufacturing Processes[J]. Automation in Construction, 2012, 21:262-268.
    PFäNDLER P, WANGLER T, MATA-FALCóN J, et al. Potentials of Steel Fibres for Mesh Mould Elements[C]//RILEM International Conference on Concrete and Digital Fabrication. Cham:Springer-Verlag, 2018:207-216.
    BAO Y, XU M, SOLTAN D, et al. Three-Dimensional Printing Multifunctional Engineered Cementitious Composites (ECC) for Structural Elements[C]//RILEM International Conference on Concrete and Digital Fabrication. Cham:Springer-Verlag, 2018:115-128.
    COSTANZI C B, AHMED Z Y, SCHIPPER H R, et al. 3D Printing Concrete on Temporary Surfaces:The Design and Fabrication of a Concrete Shell Structure[J]. Automation in Construction, 2018, 94:395-404.
    PUTTEN J V D, SCHUTTER G D, TITTELBOOM K V. The Effect of Print Parameters on the (Micro) Structure of 3D Printed Cementitious Materials[C]//RILEM International Conference on Concrete and Digital Fabrication. Cham:Springer-Verlag, 2018:234-244.
    MARCHMENT T, SANJAYAN J, XIA M. Method of Enhancing Interlayer Bond Strength in Construction Scale 3D Printing with Mortar by Effective Bond Area Amplification[J]. Materials & Design, 2019, 169.DOI.org/10.1016/j.matdes.2019.107684.
    ZAREIYAN B, KHOSHNEVIS B. Effects of Interlocking on Interlayer Adhesion and Strength of Structures in 3D Printing of Concrete[J]. Automation in Construction, 2017, 83:212-221.
    KRISHNA Balla V, ROBERSON L B, O'Connor G W, et al. First Demonstration on Direct Laser Fabrication of Lunar Regolith Parts[J]. Rapid Prototyping Journal, 2012, 18(6):451-457.
    宋蕾,徐佼,唐红,等.模拟月壤成型研究现状[J].矿物学报,2020,40(1):47-57.
    KHOSHNEVIS B, ZHANG J, FATERI M, et al. Ceramics 3D Printing by Selective Inhibition Sintering[C]//Solid Free Form Symposium (SFF). 2014.
    KHOSHNEVIS B, CARLSON A, THANGAVELU M. ISRU-Based Robotic Construction Technologies for Lunar and Martian Infrastructures[J]. Los Angeles:University of Southern California,2017.
    NAKAMURA T, SENIOR C L. Solar Thermal Power for Lunar Materials Processing[J]. Journal of Aerospace Engineering, 2008, 21(2):91-101.
    NAKAMURA T, SMITH B. Solar Power System for Lunar ISRU Applications[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010:1162.
    TAYLOR L A, MEEK T T. Microwave Sintering of Lunar Soil:Properties, Theory, and Practice[J]. Journal of Aerospace Engineering, 2005, 18(3):188-196.
    ALLAN S, BRAUNSTEIN J, BARANOVA I, et al. Computational Modeling and Experimental Microwave Processing of JSC-1A Lunar Simulant[J]. Journal of Aerospace Engineering, 2012, 26(1):143-151.
    MEURISSE A, MAKAYA A, WILLSCH C, et al. Solar 3D Printing of Lunar Regolith[J]. Acta Astronautica, 2018, 152:800-810.
    CORRIAS G, LICHERI R, ORRù R, et al. Self-Propagating High-Temperature Reactions for the Fabrication of Lunar and Martian Physical Assets[J]. Acta Astronautica, 2012, 70:69-76.
    HAPPEL J A. Indigenous Materials for Lunar Construction[J]. Applied Mechanics Reviews, 1993, 46(6):313-325.
    邢丹,葸雄宇,郭泽世,等.模拟月壤制备连续纤维的可行性研究[J].中国科学(技术科学),2020,50(12):1625-1633.
    ZHOU C, CHEN R, XU J, et al. In-Situ Construction Method for Lunar Habitation:Chinese Super Mason[J]. Automation in Construction, 2019, 104:66-79.
    罗丹, 徐卫国. 参数化砖墙的新型建造方法研究[J]. 建筑技艺, 2017(7):110-112.
    BASSLER J, BODIFORD M, HAMMOND M, et al. In-Situ Fabrication and Repair (ISFR) Technologies; New Challenges for Exploration[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. 2006.
    THANGAVELU M, ADHIKARI P. MPIT:Minimally Processed ISRU Technology Structures for Rapid Extraterrestrial Settlement Infrastructure Development[C]//AIAA SPACE and Astronautics Forum and Exposition. 2017.
    ROEDEL H, LEPECH M D, LOFTUS D J. Protein-Regolith Composites for Space Construction[J]. Earth and Space, 2014:291-300.
    XIA M, NEMATOLLAHI B, SANJAYAN J. Compressive Strength and Dimensional Accuracy of Portland Cement Mortar Made Using Powder:Based 3D Printing for Construction Applications[C]//RILEM International Conference on Concrete and Digital Fabrication. Cham:Springer-Verlag, 2018:245-254.
    SMITHERS G A, NEHLS M K, HOVATER M A, et al. A One-Piece Lunar Regolith Bag Garage Prototype[R]. Huntsville:Marshall Space Flight Center,2007.
    SOLEYMANI T, TRIANNI V, BONANI M, et al. Autonomous Construction with Compliant Building Material[G]//Intelligent Autonomous Systems 13. Cham:Springer-Verlag, 2016:1371-1388.
    VANDERBILT M D, CRISWELL M E, SADEH W Z. Structures for a Lunar Base[C]//Engineering, Construction, and Operations in Space. Reston, VA:American Society of Civil Engineers, 1988:352-361.
    CHOW P Y, LIN T Y. Structures for the Moon[C]//Engineering, Construction, and Operations in Space. Reston, VA:American Society of Civil Engineers, 1988:362-374.
    MATSUMOTO S, NAMBA H, KAI Y, et al. Concrete Structure Construction on the Moon[C]//2nd Conference on Lunar Bases and Space Activities. 1992:493-496.
    MALLA R B, CHAUDHURI D. Dynamic Analysis of a 3-D Frame-Membrane Lunar Structure Subjected to Impact[J]. Earth & Space, 2008(1):1-10.
    BERNOLD L E, BENAROYA H. Early Lunar Structures, Engineering[J]. Encyclopedia of Lunar Science, 2018(1):1-9.
  • Relative Articles

    [1]LI Hao, WANG Dayang, ZHAO Dongzhuo, XIE Zhen. Shaking Table Tests and Numerical Simulation Study on the Centroid Eccentricity of the Center of Mass of Full-Frame-Supported High-Rise Building Structure with Thick Plate Transfer[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 141-149. doi: 10.3724/j.gyjzG23032007
    [2]ZONG Zhongling, CEN Hang, MIAO Huiquan, HUANG Delong, TANG Aiping, LIU Qiang. Research Progress on Dynamic Response and Seismic Resistance of Helical Pile Foundations[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 133-143. doi: 10.3724/j.gyjzG23122904
    [3]LAN Xiang, PAN Wen, SU Hexian, LAI Zhengcong, YU Wenzheng. Study on Seismic Simulation Shaking Table Tests of a Complex Museum with Combined Seismic Isolation and Shock Absorpation Structure[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 121-129. doi: 10.13204/j.gyjzG22011107
    [4]YAN Xiaoyu, ZHAO Zhuo, WANG Jin. Research on Near-Fault Seismic Response of Rigid Frame Bridge Based on Shaking Table Test Considering SSI Effect[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 140-146. doi: 10.13204/j.gyjzG21102801
    [5]ZHOU Zhiguang, CHEN Hao, ZHAO Jinyi. Study on Shaking Table Test of Nuclear Structure Considering SSI Effect and Isolation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 87-92. doi: 10.13204/j.gyjzG19100102
    [6]REN Guopeng, PAN Rong, SUN Feng, GUO Xing. INFLUENCE OF DIFFERENT TYPES OF ISOLATION BEARINGS ON ISOLATION PERFORMANCE OF NUCLEAR ISLAND PLANT[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(12): 41-48. doi: 10.13204/j.gyjzG21101113
    [7]WANG Shuqi, TIAN Shizhu. SHAKING TABLE TEST AND DAMAGE ANALYSIS OF STEEL FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 74-78,86. doi: 10.13204/j.gyjzG20041904
    [8]WANG Zhiyuan, HU Zujun, LI Sheng, LI Suchao, LIU Zhenliang. SHAKING TABLE TESTS OF VERTICAL ISOLATION FOR TRANSFORMER MODELS BASED ON METALLIC RUBBER CUSHION AND SPRINGS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 7-12. doi: 10.13204/j.gyjzG21052420
    [9]HUANG Lin, GUO Zhan, CHEN Yu, HE Kang. SHAKING TABLE TEST STUDY ON THE NEW ROCKING SELF-CENTERING BRIDGE PIERS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 83-88,117. doi: 10.13204/j.gyjzG201906300001
    [10]XU Qikeng, WANG Lumin, DING Yonggang, LIU Qiang, LI Xuesen, LUO Qian. SHAKING TABLE TEST STUDY OF SEISMIC BEHAVIOR ON COLUMN-SUPPORTED GROUP SILOS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 75-82. doi: 10.13204/j.gyjzGYJZ201908010011
    [11]Li Qingning, Yan Lei, Cui Wei, Yin Junhong, Liao Xin. SHAKING TABLE TEST OF S-SHAPED IRREGULAR CURVE VIADUCT[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(8): 86-90. doi: 10.13204/j.gyjz201508016
    [12]Zhu Wenzheng, Zhang Jichao. SIMULATION ANALYSIS AND SHAKING TABLE TEST OF ISOLATION SYSTEM FOR GIANT STEEL STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 114-117. doi: 10.13204/j.gyjz201502024
    [13]Zhu Xiaoxia, He Mingsheng. SHAKING TABLE TEST OF THE ENCLOSURE WALL MULTIFUNCTIONAL VIBRATION ABSORPTION STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 146-151. doi: 10.13204/j.gyjz201410029
    [14]Xu Qingyang, Li Aiqun, Ding Youliang, Shen Shungao, Hu Canyang. STUDY ON VERTICAL SEISMIC RESPONSE PASSIVE CONTROL OF LONG-SPAN MAINTENANCE HANGAR[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 110-116. doi: 10.13204/j.gyjz201311025
    [15]Du Yuanfang, Wang Sheliang, Zhao Qin, Fan Yujiang. SHAKING TABLE TEST OF ENHANCED RECYCLED AGGREGATE CONCRETE FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 30-33,44. doi: 10.13204/j.gyjz201311007
    [16]Wu Ming, Ye Xianguo, Jiang Qing, Chang Lei. SHAKING TABLE MODEL TEST DESIGN FOR SUPER MEGA FRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 47-51. doi: 10.13204/j.gyjz201306011
    [17]Chen Zhenming, Ci Longsheng, Lou Guobiao, Wang Jun, Yu Jiawang. EXPERIMENTAL STUDY ON BRACKET-TYPE JOINTS OF CONCRETE FILLED STEEL TUBULAR COLUMN AND SECTION-STEEL CONCRETE BEAM[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(12): 96-103. doi: 10.13204/j.gyjz201212021
    [18]Zhao Hongtie, Zhang Fengliang, Xue Jianyang, Ma Hui, Zhang Xicheng. SHAKING TABLE TEST AND NUMERICAL SIMULATION OF THE ROOF IN ANCIENT TIMBER STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(8): 46-48. doi: 10.13204/j.gyjz201108013
    [19]Wang Yanhua, Cheng Wenrang, Chen Zhongfan. ELEMENTARY INTRODUCTION TO SHAKING TABLE TEST OF SEISMIC SIMULATION[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 34-37. doi: 10.13204/j.gyjz200807008
    [20]Shi Qiyin, Li Aiqun, Li Peibin, Lou Yu, Chen Liu. TESTS ON SHAKING TABLE OF NEW TALL TOWER STRUCTURE MODEL FOR BEIJING AIRPORT[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(9): 40-44,63. doi: 10.13204/j.gyjz200409012
  • Cited by

    Periodical cited type(1)

    1. 唐云,朱旺,薛志航,谢强. ±1200kV特高压直流穿墙套管抗震性能分析. 高压电器. 2022(08): 41-49 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.8 %FULLTEXT: 16.8 %META: 82.4 %META: 82.4 %PDF: 0.8 %PDF: 0.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.6 %其他: 9.6 %China: 3.2 %China: 3.2 %乌鲁木齐: 0.8 %乌鲁木齐: 0.8 %北京: 4.0 %北京: 4.0 %合肥: 0.8 %合肥: 0.8 %嘉兴: 0.8 %嘉兴: 0.8 %太原: 0.8 %太原: 0.8 %宿州: 1.6 %宿州: 1.6 %常德: 1.6 %常德: 1.6 %延边朝鲜族自治州: 1.6 %延边朝鲜族自治州: 1.6 %张家口: 3.2 %张家口: 3.2 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.8 %朝阳: 0.8 %枣庄: 0.8 %枣庄: 0.8 %梧州: 0.8 %梧州: 0.8 %济南: 1.6 %济南: 1.6 %湖州: 1.6 %湖州: 1.6 %福州: 0.8 %福州: 0.8 %芒廷维尤: 11.2 %芒廷维尤: 11.2 %衢州: 0.8 %衢州: 0.8 %西宁: 30.4 %西宁: 30.4 %贵阳: 1.6 %贵阳: 1.6 %运城: 11.2 %运城: 11.2 %邯郸: 0.8 %邯郸: 0.8 %郑州: 0.8 %郑州: 0.8 %重庆: 0.8 %重庆: 0.8 %镇江: 4.8 %镇江: 4.8 %长治: 1.6 %长治: 1.6 %阳泉: 0.8 %阳泉: 0.8 %其他China乌鲁木齐北京合肥嘉兴太原宿州常德延边朝鲜族自治州张家口晋城朝阳枣庄梧州济南湖州福州芒廷维尤衢州西宁贵阳运城邯郸郑州重庆镇江长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1202) PDF downloads(36) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return