Citation: | FENG Peng, BAO Charun, ZHANG Daobo, YUE Qingrui, QI Junfeng, ZUO Yang. CONSTRUCTION TECHNOLOGY FOR LUNAR BASES USING LUNAR IN-SITU RESOURCES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 169-178. doi: 10.13204/j.gyjzG20090813 |
张弛. 冷战中的美苏载人登月竞赛[D]. 西安:陕西师范大学, 2011.
|
COMSTOCK D, PETRO A. NASA's Centennial Challenges Contributions to ISRU[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2009.DOI: 10.2514/6.2009-1205.
|
鲁暘筱懿, 平劲松, SHEVCHENKO V. 俄罗斯"月球-全球"和"月球-资源"探月任务[J].航天器工程, 2013, 22(4):103-108.
|
国务院新闻办公室.《2006年中国的航天》白皮书[J]. 中国航天, 2006(11):10-15.
|
欧阳自远. 嫦娥四号月背软着陆的重大意义[J]. 世界科学, 2019(3):28-30.
|
周文. "嫦娥"回家创造中国五项首次[J].人民周刊,2020(24):10.
|
于登云, 葛之江, 王乃东,等. 月球基地结构形式设想[J]. 宇航学报, 2012, 33(12):1840-1844.
|
丁烈云,徐捷,骆汉宾,等.月面建造工程的挑战与研究进展[J].载人航天,2019,25(3):277-285.
|
BENAROYA H, BERNOLD L. Engineering of Lunar Bases[J]. Acta Astronautica, 2008, 62(4/5):277-299.
|
MOTTAGHI S, BENAROYA H. Design of a Lunar Surface Structure I:Design Configuration and Thermal Analysis[J]. Journal of Aerospace Engineering, 2014, 28(1).DOI: 10.1061/(ASCE)AS.1943-5525.0000382.
|
VRAKKING V R, GUO J, SCHUBERT D. Design of a Deployable Structure for a Lunar Greenhouse Module[C]//43rd International Conference on Environmental Systems. 2013.
|
CHANDRAN S B R, RAJESH S R, ABRAHAM A, et al. SEP Events and Wake Region Lunar Dust Charging with Grain Radii[J]. Advances in Space Research, 2017, 59(1):483-489.
|
CRISWELL D R. Lunar Dust Motion[C]//Lunar and Planetary Science Conference Proceedings. 1972.
|
WILLIAMS J P, PAIGE D A, GREENHAGEN B T, et al. The Global Surface Temperatures of the Moon as Measured by the Diviner Lunar Radiometer Experiment[J]. Icarus, 2017, 283:300-325.
|
RUESS F, ZACNY K, BRAUN B. Lunar In-Situ Resource Utilization:Regolith Bags Automated Filling Technology[C]//AIAA SPACE 2008 Conference & Exposition. 2008.
|
BENAROYA H, INDYK S, MOTTAGHI S. Advanced Systems Concept for Autonomous Construction and Self-Repair of Lunar Surface ISRU Structures[G]//Moon. Heidelberg:Springer, Cham, 2012:641-660.
|
欧阳自远. 月球科学概论[M]. 北京:中国宇航出版社, 2005.
|
KEIHM S J, PETERS K, LANGSETH M G, et al. Apollo 15 Measurement of Lunar Surface Brightness Temperatures Thermal Conductivity of the Upper 11/2 meters of regolith[J]. Earth and Planetary Science Letters, 1973, 19(3):337-351.
|
HEMINGWAY B S, ROBIE R A, WILSON W H. Specific Heats of Lunar Soils, Basalt, and Breccias from the Apollo 14, 15, and 16 Landing Sites, Between 90 and 350 K[C]//Lunar and Planetary Science Conference Proceedings. 1973.
|
LOGAN L M, HUNT G R, BALSAMO S R, et al. Midinfrared Emission Spectra of Apollo 14 and 15 Soils and Remote Compositional Mapping of the Moon[C]//Lunar and Planetary Science Conference Proceedings. 1972.
|
VANIMAN D, REEDY R, HEIKEN G, et al. The Lunar Environment[G]. BENAROYA H. Building Habitats on the Moon:Engineering Approaches to Lunar Settlements. Heidelberg:Springer, Cham,2018:42-84.https://doi.org/10.1007/978-3-319-68244-0.
|
JOLLY S D, HAPPEL J, STURE S. Design and Construction of Shielded Lunar Outpost[J]. Journal of Aerospace Engineering, 1994, 7(4):417-434.
|
BOLDOGHY B, KUMMERT J, VARGA T, et al. Practical Realization of Covering Lunar Buildings for Ensure Levelled Temperature Environment[C]//Lunar and Planetary Science Conference. 2007:1380-1381.
|
TOUTANJI H, GLENN-LOPER B, SCHRAYSHUEN B. Strength and Durability Performance of Waterless Lunar Concrete[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005:1436-1444.
|
ANAND M. Lunar Water:a Brief Review[J]. Earth, Moon, and Planets, 2010, 107(1):65-73.
|
FELDMAN W C, LAWRENCE D J, ELPHIC R C, et al. Polar Hydrogen Deposits on the Moon[J]. Journal of Geophysical Research:Planets, 2000, 105(E2):4175-4195.
|
BOYCE J W, LIU Y, ROSSMAN G R, et al. Lunar Apatite with Terrestrial Volatile Abundances[J]. Nature, 2010, 466(7305):466-469.
|
RUESS F, SCHAENZLIN J, BENAROYA H. Structural Design of a Lunar Habitat[J]. Journal of Aerospace Engineering, 2006, 19(3):133-157.
|
CESARETTI G, DINI E, DE KESTELIER X, et al. Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology[J]. Acta Astronautica, 2014, 93:430-450.
|
HOU X, DING T, CHEN T, et al. Constitutive Properties of Irregularly Shaped Lunar Soil Simulant Particles[J]. Powder Technology, 2019, 346:137-149.
|
HORZ F. Lava Tubes-Potential Shelters for Habitats[C]//Lunar Bases and Space Activities of the 21st Century. 1985:405-412.
|
ANGELIS D G, WILSON J W, CLOWDSLEY M S, et al. Lunar Lava Tube Radiation Safety Analysis[J]. Journal of Radiation Research, 2002, 43(S):S41-S45.
|
TÓTH A R, BAGI K. Analysis of a Lunar Base Structure Using the Discrete-Element Method[J]. Journal of Aerospace Engineering, 2010, 24(3):397-401.
|
BERNOLD L E. Experimental Studies on Mechanics of Lunar Excavation[J]. Journal of Aerospace Engineering, 1991, 4(1):9-22.
|
DICK R D, FOURNEY W L, GOODINGS D J, et al. Use of Explosives on the Moon[J]. Journal of Aerospace Engineering, 1992, 5(1):59-69.
|
NEKOOVAGHT P, GHARIB N, HASSANI F. Microwave Assisted Rock Breakage for Space Mining[C]//ASCE's Aerospace Division, the 14th Earth and Space Conference. 2014.
|
COVEY S D. An Electromagnetic Asteroid Regolith Excavator:Preliminary Results[C]//Earth and Space 2016:Engineering for Extreme Environments. Reston, VA:American Society of Civil Engineers, 2016:523-529.
|
WANGLER T, ROUSSEL N, BOS F P, et al. Digital Concrete:A Review[J]. Cement and Concrete Research, 2019, 123:105780.
|
WANGLER T, LLORET E, REITER L, et al. Digital Concrete:Opportunities and Challenges[J]. RILEM Technical Letters, 2016(1):67-75.
|
SHAKOR P, SANJAYAN J, NAZARI A, et al. Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing[J]. Construction and Building Materials, 2017, 138:398-409.
|
蔺喜强, 张涛, 霍亮, 等. 水泥基建筑3D打印材料的制备及应用研究[J].混凝土, 2016(6):141-144.
|
GRUGEL R N, TOUTANJI H. Sulfur "Concrete" for Lunar Applications-Sublimation Concerns[J]. Advances in Space Research, 2008, 41(1):103-112.
|
FISKE M R, MCGREGOR W, POPE R, et al. Lunar In-Situ Materials:Based Surface Structure Technology Development Efforts at NASA/MSFC[C]//AIP Conference Proceedings. 2007, 880(1):871-877.
|
郭晓潞,熊归砚,王志浩.地聚合物基月球混凝土及其3D打印原位建造设想[J].航天器环境工程,2020,37(3):209-217.
|
KHOSHNEVIS B, BODIFORD M, BURKS K, et al. Lunar Contour Crafting:A Novel Technique for ISRU-Based Habitat Development[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005:538-550.
|
KHOSHNEVIS B, CARLSON A, LEACH N, et al. Contour Crafting Simulation Plan for Lunar Settlement Infrastructure Build-Up[C]//Earth and Space 2012:Engineering, Science, Construction, and Operations in Challenging Environments.2012:1458-1467.
|
LLORET F E, REITER L, WANGLER T, et al. Smart Dynamic Casting:Slipforming with Flexible Formwork-Inline Measurement and Control[C]//HPC/CIC Tromsø 2017. 2017:27.DOI: 10.3929/ethz-b-000219663.
|
DUBALLET R, DIRRENBERGER J, BAVEREL O. Space Truss Masonry Walls with Robotic Mortar Extrusion[C]//Proceedings of IASS Annual Symposia. International Association for Shell and Spatial Structures (IASS). 2018. 2018:1-7.
|
HACK N, WANGLER T, MATA-FALCÓN J, et al. Mesh Mould:An on Site, Robotically Fabricated, Functional Formwork[C]//Second Concrete Innovation Conference (2nd CIC). 2017.
|
GOSSELIN C, DUBALLET R, ROUX P, et al. Large-Scale 3D Printing of Ultra-High Performance Concrete:A New Processing Route for Architects and Builders[J]. Materials & Design, 2016, 100:102-109.
|
DUBALLET R, GOSSELIN C, ROUX P. Additive Manufacturing and Multi-Objective Optimization of Graded Polystyrene Aggregate Concrete Structures[G]//Modelling Behaviour. Cham:Springer-Verlag, 2015:225-235.
|
LIN T D. Lunar Concrete Made with the Dry-Mix/Steam-Injection Method[J]. SpaceV, 1996(1):552-599.
|
SANJAYAN J G, NEMATOLLAHI B. 3D Concrete Printing Technology[M]. Oxford:Butterworth-Heinemann, 2019:1-11.
|
ASPRONE D, AURICCHIO F, MENNA C, et al. 3D Printing of Reinforced Concrete Elements:Technology and Design Approach[J]. Construction and Building Materials, 2018, 165:218-231.
|
BOS F P, AHMED Z Y, WOLFS R J M, et al. 3D Printing Concrete with Reinforcement[C]//High Tech Concrete:Where Technology and Engineering Meet. Cham:Springer-Verlag, 2018:2484-2493.
|
LIM S, BUSWELL R A, LE T T, et al. Developments in Construction-Scale Additive Manufacturing Processes[J]. Automation in Construction, 2012, 21:262-268.
|
PFäNDLER P, WANGLER T, MATA-FALCóN J, et al. Potentials of Steel Fibres for Mesh Mould Elements[C]//RILEM International Conference on Concrete and Digital Fabrication. Cham:Springer-Verlag, 2018:207-216.
|
BAO Y, XU M, SOLTAN D, et al. Three-Dimensional Printing Multifunctional Engineered Cementitious Composites (ECC) for Structural Elements[C]//RILEM International Conference on Concrete and Digital Fabrication. Cham:Springer-Verlag, 2018:115-128.
|
COSTANZI C B, AHMED Z Y, SCHIPPER H R, et al. 3D Printing Concrete on Temporary Surfaces:The Design and Fabrication of a Concrete Shell Structure[J]. Automation in Construction, 2018, 94:395-404.
|
PUTTEN J V D, SCHUTTER G D, TITTELBOOM K V. The Effect of Print Parameters on the (Micro) Structure of 3D Printed Cementitious Materials[C]//RILEM International Conference on Concrete and Digital Fabrication. Cham:Springer-Verlag, 2018:234-244.
|
MARCHMENT T, SANJAYAN J, XIA M. Method of Enhancing Interlayer Bond Strength in Construction Scale 3D Printing with Mortar by Effective Bond Area Amplification[J]. Materials & Design, 2019, 169.DOI.org/10.1016/j.matdes.2019.107684.
|
ZAREIYAN B, KHOSHNEVIS B. Effects of Interlocking on Interlayer Adhesion and Strength of Structures in 3D Printing of Concrete[J]. Automation in Construction, 2017, 83:212-221.
|
KRISHNA Balla V, ROBERSON L B, O'Connor G W, et al. First Demonstration on Direct Laser Fabrication of Lunar Regolith Parts[J]. Rapid Prototyping Journal, 2012, 18(6):451-457.
|
宋蕾,徐佼,唐红,等.模拟月壤成型研究现状[J].矿物学报,2020,40(1):47-57.
|
KHOSHNEVIS B, ZHANG J, FATERI M, et al. Ceramics 3D Printing by Selective Inhibition Sintering[C]//Solid Free Form Symposium (SFF). 2014.
|
KHOSHNEVIS B, CARLSON A, THANGAVELU M. ISRU-Based Robotic Construction Technologies for Lunar and Martian Infrastructures[J]. Los Angeles:University of Southern California,2017.
|
NAKAMURA T, SENIOR C L. Solar Thermal Power for Lunar Materials Processing[J]. Journal of Aerospace Engineering, 2008, 21(2):91-101.
|
NAKAMURA T, SMITH B. Solar Power System for Lunar ISRU Applications[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010:1162.
|
TAYLOR L A, MEEK T T. Microwave Sintering of Lunar Soil:Properties, Theory, and Practice[J]. Journal of Aerospace Engineering, 2005, 18(3):188-196.
|
ALLAN S, BRAUNSTEIN J, BARANOVA I, et al. Computational Modeling and Experimental Microwave Processing of JSC-1A Lunar Simulant[J]. Journal of Aerospace Engineering, 2012, 26(1):143-151.
|
MEURISSE A, MAKAYA A, WILLSCH C, et al. Solar 3D Printing of Lunar Regolith[J]. Acta Astronautica, 2018, 152:800-810.
|
CORRIAS G, LICHERI R, ORRù R, et al. Self-Propagating High-Temperature Reactions for the Fabrication of Lunar and Martian Physical Assets[J]. Acta Astronautica, 2012, 70:69-76.
|
HAPPEL J A. Indigenous Materials for Lunar Construction[J]. Applied Mechanics Reviews, 1993, 46(6):313-325.
|
邢丹,葸雄宇,郭泽世,等.模拟月壤制备连续纤维的可行性研究[J].中国科学(技术科学),2020,50(12):1625-1633.
|
ZHOU C, CHEN R, XU J, et al. In-Situ Construction Method for Lunar Habitation:Chinese Super Mason[J]. Automation in Construction, 2019, 104:66-79.
|
罗丹, 徐卫国. 参数化砖墙的新型建造方法研究[J]. 建筑技艺, 2017(7):110-112.
|
BASSLER J, BODIFORD M, HAMMOND M, et al. In-Situ Fabrication and Repair (ISFR) Technologies; New Challenges for Exploration[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. 2006.
|
THANGAVELU M, ADHIKARI P. MPIT:Minimally Processed ISRU Technology Structures for Rapid Extraterrestrial Settlement Infrastructure Development[C]//AIAA SPACE and Astronautics Forum and Exposition. 2017.
|
ROEDEL H, LEPECH M D, LOFTUS D J. Protein-Regolith Composites for Space Construction[J]. Earth and Space, 2014:291-300.
|
XIA M, NEMATOLLAHI B, SANJAYAN J. Compressive Strength and Dimensional Accuracy of Portland Cement Mortar Made Using Powder:Based 3D Printing for Construction Applications[C]//RILEM International Conference on Concrete and Digital Fabrication. Cham:Springer-Verlag, 2018:245-254.
|
SMITHERS G A, NEHLS M K, HOVATER M A, et al. A One-Piece Lunar Regolith Bag Garage Prototype[R]. Huntsville:Marshall Space Flight Center,2007.
|
SOLEYMANI T, TRIANNI V, BONANI M, et al. Autonomous Construction with Compliant Building Material[G]//Intelligent Autonomous Systems 13. Cham:Springer-Verlag, 2016:1371-1388.
|
VANDERBILT M D, CRISWELL M E, SADEH W Z. Structures for a Lunar Base[C]//Engineering, Construction, and Operations in Space. Reston, VA:American Society of Civil Engineers, 1988:352-361.
|
CHOW P Y, LIN T Y. Structures for the Moon[C]//Engineering, Construction, and Operations in Space. Reston, VA:American Society of Civil Engineers, 1988:362-374.
|
MATSUMOTO S, NAMBA H, KAI Y, et al. Concrete Structure Construction on the Moon[C]//2nd Conference on Lunar Bases and Space Activities. 1992:493-496.
|
MALLA R B, CHAUDHURI D. Dynamic Analysis of a 3-D Frame-Membrane Lunar Structure Subjected to Impact[J]. Earth & Space, 2008(1):1-10.
|
BERNOLD L E, BENAROYA H. Early Lunar Structures, Engineering[J]. Encyclopedia of Lunar Science, 2018(1):1-9.
|
[1] | BAO Charun, ZHANG Daobo, ZHI Xiao, MA Zhongcheng, FENG Peng, WU Hao. Preparation of a Lunar Regolith Simulant for In-Situ Construction Research: TC-1C[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(1): 176-181. doi: 10.3724/j.gyjzG24110702 |
[2] | ZHAO Jiacheng, LUO Yuxuan, ZHANG Daobo, BAO Charun, FENG Peng. A Novel Approach for Martian Base Construction Using In-Situ Resources[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 102-114. doi: 10.3724/j.gyjzG23092901 |
[3] | ZHANG Bo, QU Songzhao, LIU Guanghui, ZHANG Bin, MA Zhengwei, SUN Qing. In-Situ Experiments on Cyclic Uplift Bearing Characteristics of Helical Piles in Silt[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 204-210. doi: 10.13204/j.gyjzG22082002 |
[4] | LI Yunfu, ZHANG Hongwei, MA Bo, WU Yanqi, LI Shengli. Characteristic Analysis of AE Signal Parameters of Masonry Structures in Axial Compression and In-Situ Axial Compression Tests[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 8-11,63. doi: 10.13204/j.gyjzG20111210 |
[5] | WU Jiaxin, WANG Yu, WU Lei. Experimental Research on Mechanical Properties of In-Situ Printed Concrete Slabs[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 61-67,93. doi: 10.13204/j.gyjzG22092808 |
[6] | GUAN Xiaodi, LI Rongjian, JIANG Zilong, QIN Zexuan, CAO Jieyu. Model Tests for Two-Tier Slopes Supported with Ridge Walls of Geotextile Bags Under Lateral Loading[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 140-149. doi: 10.13204/j.gyjzG21050609 |
[7] | SHI Qingxuan, WAN Shengmu. STUDY ON QUANTITATIVE MODEL OF BUILDABILITY PERFORMANCE OF 3D PRINTED CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 16-23. doi: 10.13204/j.gyjzG20120105 |
[8] | CAI Jianguo, ZHANG Qian, WANG Liwu, DU Caixia, ZHANG Huizhong, WANG Yongbin, WU Shiqing. RESEARCH ON IN-SITU FORMING TECHNIQUE OF THE LUNAR SOIL AND ITS STRUCTURE SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 42-47,83. doi: 10.13204/j.gyjzG21020403 |
[9] | CHEN Bin, ZHU Zhaoqing, FENG Bing, LI Panfeng, DING Shijun. IN-SITU TEST RESEARCH ON UPLIFT BEARING CAPACITY OF SCREWANCHOR IN SOFT GROUND OF MIRE AREA[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 71-74,132. doi: 10.13204/j.gyjz202005012 |
[14] | Bai Xiaoyu, Zhang Mingyi, Liu He. IN-SITU TEST STUDY ON BEARING BEHAVIOR OF ANTI-FLOATING MICROPILE IN WEATHERED ROCK SITE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 94-97. doi: 10.13204/j.gyjz201402021 |
[15] | Shui Weihou, Liang Yonghui, Zhan Jinlin. FULL-SCALE LARGE FIELD TESTS OF PILE-RAFT IN SOFT SOIL AREA[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 88-92. doi: 10.13204/j.gyjz200904020 |
[16] | Shen Ren, Chen Xi-rong, Xu Mao-ye. DESIGN AND CONSTRUCTION OF MULTI STOREY LOOM MILL BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(11): 32-33,60. doi: 10.13204/j.gyjz200711009 |
1. | 何铭泽. BFRP筋在冻融循环作用下的耐久性能研究. 广州建筑. 2025(01): 60-63 . ![]() | |
2. | 姚羿舟,刘超,刘化威,张韦. 热真空环境下碱激发模拟月壤物相分布特征与固化反应机理研究. 土木工程学报. 2025(05): 105-118 . ![]() | |
3. | 赵嘉成,罗宇轩,张道博,包查润,冯鹏. 基于原位资源利用的火星基地建造方案. 工业建筑. 2024(01): 102-114 . ![]() | |
4. | 薛暄译,华建民,肖畅,黄乐鹏. 极端环境下月球基地智能建造技术展望. 前瞻科技. 2024(01): 109-115 . ![]() | |
5. | 蒋明镜,王思远,姜朋明,华亦雄,石安宁,杨越群,薛桥斌,戴婉婷,仇淞. 月球基地的建设远景与挑战. 山东大学学报(工学版). 2024(02): 114-125 . ![]() | |
6. | 杨旭,吕书畅,王强,杨旭,凌鑫阳,Sebastian Wandelt. 面向月球基地设备交互场景的目标检测与路径规划算法研究. 导航定位与授时. 2024(03): 36-47 . ![]() | |
7. | 迟海义,袁帅,潘文特,高飞宇,张泽旭,王永滨. 月壤-柔性充气膜组合式防护层力热性能分析. 宇航学报. 2024(05): 778-789 . ![]() | |
8. | 杨少博,冯鹏,张道博,左洋,祁俊峰,包查润,王钦玉. 面向月面原位建造的模拟月壤太阳聚光熔融试验研究. 华中科技大学学报(自然科学版). 2024(08): 130-138 . ![]() | |
9. | 童小华,袁烽,郑虎,晏雄锋,王超,谢欢,许雄,徐聿升,陈鹏,魏超. 月球资源勘测与原位利用进展及关键挑战. 同济大学学报(自然科学版). 2024(08): 1151-1162 . ![]() | |
10. | 潘鹏志,王兆丰,封雨捷,李雨芯. 深空探测任务中岩土力学若干问题及研究进展. 岩土力学. 2024(11): 3153-3172 . ![]() | |
11. | 周晨捷,司天誉,程志龙,王秋旺. 基于热电的散料能量收割装置性能分析研究. 工程热物理学报. 2024(12): 3783-3790 . ![]() | |
12. | 迟海义,谭康,袁帅,潘文特,张泽旭,王智超. 充气式月球居住舱及其关键技术研究进展. 航天返回与遥感. 2024(06): 1-14 . ![]() | |
13. | 蔡建国,朱亚军,姚伟,李媛媛,周雅,张骞. 榫卯砌块结构静力与抗月震性能研究. 建筑结构. 2024(24): 46-53 . ![]() | |
14. | 蔡礼雄,彭祺擘,王慎泉,周诚. 月球原位建造材料制备方法与应用技术综述. 施工技术(中英文). 2023(01): 4-16 . ![]() | |
15. | 蒋明镜,张鑫蕊,司马军,姜朋明,李瑞林,刘一飞. 壤基材料加筋月壤技术在月球基地建设中的应用. 苏州科技大学学报(自然科学版). 2023(03): 11-20+53 . ![]() | |
16. | 刘益清,梅洪元,刘鹏跃,潘文特,李书颀. 极端环境下月球建筑设计问题研究. 世界建筑. 2023(11): 90-95 . ![]() | |
17. | 张泽旭,袁帅,潘文特,杨强,程昆林,李丽芳,徐绯,陈蓉,王庆功,郑博. 月球驻人基地研究综述与关键技术分析. 深空探测学报(中英文). 2023(05): 455-469+453-454 . ![]() | |
18. | 崔宇新,彭祺擘,王慎泉,许惟扬,陈刚,张崇峰. 载人月球科研试验站建设规划及设想. 上海航天(中英文). 2023(06): 64-72 . ![]() | |
19. | 徐铧东,王玉林,于东,石景富,崔嘉鑫,苗常青. 充气展开月面居住舱微流星体防护及隔热设计. 载人航天. 2022(03): 297-305 . ![]() | |
20. | 刘洁,时云,崔宇涛,侯娟,张恺,黄爱军. 空间在轨增材制造技术的研究进展与展望. 中国空间科学技术. 2022(06): 23-34 . ![]() | |
21. | 宁宇铭,李团结,姚聪,邵继升. 基于快速扩展随机树―贪婪边界搜索的多机器人协同空间探索方法. 机器人. 2022(06): 708-719 . ![]() | |
22. | 秦克章,邹心宇. 行星矿产及行星资源地质学初论. 岩石学报. 2021(08): 2276-2286 . ![]() | |
23. | 车浪,王彬,赵鹏飞,朱洪斌,程鹏,李光石,张永合,鲁雄刚. 月壤原位利用技术研究进展. 工程科学学报. 2021(11): 1433-1446 . ![]() |