Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Zhang Tiejun, Yan Yuelan. STUDY ON LOCALIZATION OF MANUFACTURE OF UNDERRELAXATION PRESTRESSED STEEL SHANDS FOR CONTAINMENT OF Ling'ao NUCLEAR POWER PLANT (PHASE-Ⅱ) AND ITS USE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 61-66. doi: 10.13204/j.gyjz200904015
Citation: ZHAO Jiacheng, LUO Yuxuan, ZHANG Daobo, BAO Charun, FENG Peng. A Novel Approach for Martian Base Construction Using In-Situ Resources[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 102-114. doi: 10.3724/j.gyjzG23092901

A Novel Approach for Martian Base Construction Using In-Situ Resources

doi: 10.3724/j.gyjzG23092901
  • Received Date: 2023-09-29
    Available Online: 2024-02-27
  • As the most similar exoplanet in the solar system, Mars is very important in the perspective of strategic value and significance. With the completion of the three missions of “orbiting, landing and patrolling” of Mars at one time, the Martian base construction has become the next important goal to promote our deep space exploration process. Through the investigation of the existing literature on the environment and resource conditions of Mars, comparing them with those on the moon and the Earth, a series of unique problems to be solved in the construction of Mars are put forward. Based on the investigation of technologies suitable for Mars construction, including excavation construction, chemical vapor deposition forming, fused deposition forming, and Martian regolith bonding forming, etc., a new scheme of automatic construction of Martian base based on in-situ resources is proposed, called “China Dome”, which components include an inflatable bag, carbon fiber skeleton, sulfur concrete cladding and hatches. This provides a new way to build a Martian base.
  • [1]
    叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望[J]. 国际太空, 2018(10): 4-10.
    [2]
    刘洋, 吴兴, 刘正豪, 等. 火星的地质演化和宜居环境研究进展[J]. 地球与行星物理论评, 2021, 52(04): 416-436.
    [3]
    J BLAMONT, A roadmap to cave dwelling on the Moon and Mars [J], Advances in Space Research 54, 1021402149(2014).
    [4]
    卢波. 火星探测的未来规划[J]. 国际太空, 2009(3): 17-21.
    [5]
    程绍驰, 吴水香. “火星科学实验室”主要技术突破分析[J]. 中国航天, 2012(11): 30-34.
    [6]
    王宇虹. 长征五号火箭成功发射天问一号火星探测器[J]. 导弹与航天运载技术, 2020(04): 101+2.
    [7]
    欧阳自远, 肖福根. 火星及其环境[J]. 航天器环境工程, 2012, 29(06): 591-601.
    [8]
    刘汉生, 王江, 赵健楠, 等. 典型模拟火星土壤研究进展[J]. 载人航天, 2020, 26(03): 389-402.
    [9]
    刘洋, 刘正豪, 吴兴, 等. 火星的水环境演化[J]. 地质学报, 2021, 95(09): 2725-2741.
    [10]
    肖万博, 王彦宾. “洞察”号火星表面地震探测中的发现[J]. 地球与行星物理论评, 2021, 52(02): 211-226.
    [11]
    VERSEUX C, BAQUE M, LEHTO K, et al. Sustainable life support on Mars: the potential roles of cyanobacteria [J]. International Journal of Astrobiology, 2016, 15(1): 65-92.
    [12]
    BIEMANN K, RUSHNECK D R, et al. The composition of the atmosphere at the surface of Mars [J]. Journal of Geophysical Research, 1977, 82(28): 4635-4639.
    [13]
    S J WEIDENSCHILLING, The distribution of mass in the planetary system and solar nebula [J], Astrophysics and Space Science 51, 1153158(1977).
    [14]
    HASSLER D M, ZEITLIN C, WIMMER-SCHWEINGRUBER R F, et al. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity Rover [J]. Science, 2014, 343(6169). DOI: 10.1126/science.12447.
    [15]
    J T SCHOFIELD, J R BARNES, and R HABERLE, et al.The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment [J], Science 278, 534417521758(1997).
    [16]
    史建魁, 刘振兴, 程征伟. 火星探测研究结果分析[J]. 科技导报, 2011, 29(10): 64-70.
    [17]
    孙伟家, 王一博, 魏勇, 等. 火星地震学与内部结构研究[J]. 地球与行星物理论评, 2021, 52(04): 437-449.
    [18]
    B KENDA, M DRILLEAU, and R F GARCIA, et al.Subsurface structure at the insight landing site from compliance measurements by seismic and meteorological experiments [J/OL], Journal of Geophysical Research: Planets 125, 6e2020JE006387(2020).
    [19]
    ZUBRIN R, WAGNER R. The Case for Mars [M]. 阳曦, 徐蕴芸, 译. 北京: 科学出版社, 2012.
    [20]
    冯鹏, 包查润, 张道博, 等. 基于月面原位资源的月球基地建造技术[J]. 工业建筑, 2021, 51(01): 169-178.
    [21]
    J F BELL, M T LEMMON, and T C DUXBURY, et al.Solar eclipses of Phobos and Deimos observed from the surface of Mars [J], Nature 436, 70475557(2005).
    [22]
    H CHEN, T SARTON DU JONCHAY, and L HOU, et al.Integrated in-situ resource utilization system design and logistics for Mars exploration [J], Acta Astronautica 170, 8092(2020).
    [23]
    党兆龙, 陈百超. 火星土壤物理力学特性分析[J]. 深空探测学报, 2016, 3(02): 129-133

    +144.
    [24]
    B C CLARK, A K BAIRD, and H J ROSE JR., et al.The Viking X ray fluorescence experiment: Analytical methods and early results [J], Journal of Geophysical Research 82, 2845774594(1977).
    [25]
    B C CLARK, A K BAIRD, and R J WELDON, et al.Chemical composition of Martian fines [J], Journal of Geophysical Research: Solid Earth 87, B121005910067(1982).
    [26]
    H WANKE, J BRÜCKNER, and G DREIBUS, et al.Chemical composition of rocks and soils at the Pathfinder Site [J], Space Science Reviews 96, 1/4317330(2001).
    [27]
    R GELLERT, R RIEDER, and R C ANDERSON, et al.Chemistry of rocks and soils in Gusev Crater from the Alpha Particle X-ray Spectrometer [J], Science 305, 5685829832(2004).
    [28]
    R RIEDER, R GELLERT, and R C ANDERSON, et al.Chemistry of rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer [J], Science 305, 568517461749(2004).
    [29]
    BLAKE D F, MORRIS R V, KOCUREK G, et al. Curiosity at Gale Crater, Mars: Characterization and analysis of the Rocknest sand shadow [J]. Science, 2013, 341(6153): 1239505. DOI: 10.1126/ science.1239505.
    [30]
    TAYLOR S R, MCLENNAN S M. Planetary Crusts: Their Composition, Origin and Evolution [M]. UK: Cambridge University Press, 2009.
    [31]
    RUDNICK R L, GAO S. Composition of the continental crust [J]. Treatise on geochemistry, 2003, 3: 659. DOI: 10.1016/0016-7037(95)00038-2.
    [32]
    WILCOX B, NASIF A, WELCH R. Implications of Martian Rock Distributions on Rover Scaling[R]. NASA Technical Reports Server (NTRS), 1997.
    [33]
    H J MOORE, G D CLOW, and R E HUTTON, A summary of Viking sample‐trench analyses for angles of internal friction and cohesions [J], Journal of Geophysical Research: Solid Earth 87, B121004310050(1982).
    [34]
    H J MOORE, D B BICKLER, and J A CRISP, et al.Soil‐like deposits observed by Sojourner, the Pathfinder rover [J], Journal of Geophysical Research: Planets 104, E487298746(1999).
    [35]
    ROVER TEAM, Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner [J], Science 278, 534417651768(1997).
    [36]
    R SULLIVAN, R ANDERSON, and J BIESIADECKI, et al.Cohesions, friction angles, and other physical properties of Martian regolith from Mars exploration rover wheel trenches and wheel scuffs [J], Journal of Geophysical Research: Planets 116, E2(2011).
    [37]
    A SHAW, R E ARVIDSON, and R BONITZ, et al.Phoenix soil physical properties investigation [J], Journal of Geophysical Research: Planets 114, E12009JE003455(2009).
    [38]
    蒋明镜, 吕雷, 李立青, 等. TJ-M1模拟火壤承载特性的研究[J]. 岩土工程学报, 2020, 42(10): 1783-1789.
    [39]
    RUESS F, ZACNY K, BRAUN B. Lunar in-situ resource utilization: regolith bags automated filling technology [C]//AIAA SPACE 2008 Conference & Exposition. San Diego, California. 2008.
    [40]
    TOKLU Y C, ÇERÇEVIK, A E. Space research and extraterrestrial construction industry [C]//20178th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2017.
    [41]
    HOFFMAN S J, ANDREWS A, JOOSTEN B K, et al. A water rich Mars surface mission scenario [C]//2017 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE. 2017: 1-21.
    [42]
    张楠, 王亮, TALALAY P, 等. 极地冰钻关键技术研究进展[J]. 探矿工程(岩土钻掘工程), 2020, 47(2): 1-16.
    [43]
    RAMKISSOON N K, PEARSON V K, SCHWENZER S P, et al. New simulants for martian regolith: Controlling iron variability [J]. Planetary and Space Science, 2019, 179: 104722. DOI: 10.1016/ j.pss.2019.104722.
    [44]
    ROME R, ANDERSEN C, DEFORE K, et al. Planetary lego: Designing a construction block from a regolith derived feedstock for in situ robotic manufacturing [C]//Earth and Space 2018: Engineering for Extreme Environments. Reston, VA: American Society of Civil Engineers. 2018: 289-296.
    [45]
    Foster+Partners. Mars Habitat[EB/OL]. 2015. URL: https://www.fosterandpartners.com/projects/mars-habitat/.
    [46]
    BIG. Mars Science City[EB/OL]. [2023-09-29]. URL: https://big.dk/#projects-mars.
    [47]
    B KADING, and J STRAUB, Utilizing in-situ resources and 3D printing structures for a manned Mars mission [J], Acta Astronautica 107, 317326(2015).
    [48]
    M TROEMNER, E RAMYAR, and J MEEHAN, et al.A 3D-printing centered approach to mars habitat architecture and fabrication [J], Journal of Aerospace Engineering 35, 104021109(2022).
    [49]
    于登云, 孙泽洲, 孟林智, 等. 火星探测发展历程与未来展望[J]. 深空探测学报, 2016, 3(02): 108-113.
    [50]
    T R ORR, J E BLEACHER, and M R PATRICK, et al.A sinuous tumulus over an active lava tube at Kīlauea Volcano: Evolution, analogs, and hazard forecasts [J], Journal of Volcanology and Geothermal Research 291, 3548(2015).
    [51]
    WYRICK D, FERRILL D A, MORRIS A P, et al. Distribution, morphology, and origins of Martian pit crater chains [J]. Journal of Geophysical Research: Planets, 2004, 109(E6). DOI: 10.1029/ 2004JE002240.
    [52]
    H D BEEMER, and D S WORRELLS, Conducting rock mass rating for tunnel construction on Mars [J], Acta Astronautica 139, 176180(2017).
    [53]
    BOWERSOX, DAVID F. Processes for metal extraction[R]. NASA Technical Reports Server (NTRS), 1997.
    [54]
    A SCHULTZ, Brittle strength of basaltic rock masses with applications to Venus [J], Journal of Geophysical Research: Planets 98, E61088310895(1993).
    [55]
    P FENG, X MENG, and J F CHEN, et al.Mechanical properties of structures 3D printed with cementitious powders [J], Construction and Building Materials 93, 486497(2015).
    [56]
    P FENG, X MENG, and H ZHANG, Mechanical behavior of FRP sheets reinforced 3D elements printed with cementitious materials [J], Composite Structures 134, 331342(2015).
    [57]
    程瑜飞. 复杂形态混凝土构件的3D打印建造与设计研究[D]. 北京: 清华大学, 2018.
    [58]
    G CESARETTI, E DINI, and X DE KESTELIER, et al.Building components for an outpost on the Lunar soil by means of a novel 3D printing technology [J], Acta Astronautica 93, 430450(2014).
    [59]
    SCOTT A, OZE C, HUGHES M W, et al. Performance of a magnesia silica cement for Martian construction [C]//Earth and Space 2018: Engineering for Extreme Environments. Reston, VA: American Society of Civil Engineers. 2018: 629-636.
    [60]
    A BARKATT, and M OKUTSU, Obtaining elemental sulfur for Martian sulfur concrete [J], Journal of Chemical Research 46, 2174751982210807(2022).
    [61]
    刘释元, 张策, 尹钊, 等. 地外二氧化碳转化利用技术研究现状与展望[J]. 中国空间科学技术, 2022, 42(06): 1-11.
    [62]
    R N GRUGEL, and H TOUTANJI, Sulfur “concrete” for lunar applications - Sublimation concerns [J], Advances in Space Research 41, 1103112(2008).
    [63]
    Y ZUO, D ZHANG, and S ZHANG, et al.Effect of vacuum environment on micro morphology and porosity of Lunar soil concrete [J], Journal of Physics: Conference Seriesries. Nanjing, China: MSEE (2022).
    [64]
    L WAN, R WENDNER, and G CUSATIS, A novel material for in situ construction on Mars: experiments and numerical simulations [J], Construction and Building Materials 120, 222231(2016).
    [65]
    C BUCHNER, R H PAWELKE, and T SCHLAUF, et al.A new planetary structure fabrication process using phosphoric acid [J], Acta Astronautica 143, 272284(2018).
    [66]
    ROEDEL H, LEPECH M D, LOFTUS D J. Protein-regolith composites for space construction [C]//Earth and Space 2014. 2014: 291-300.
    [67]
    ROSA I, LEPECH M D, LOFTUS D J. Multiscale modeling and testing of protein-bound regolith and soils [C]//Earth and Space 2018: Engineering for Extreme Environments. Reston, VA: American Society of Civil Engineers. 2018: 580-590.
    [68]
    DELGADO A, CORDOVA S, SHAFIROVICH E. Thermite reactions with oxides of iron and silicon during combustion of magnesium with lunar and Martian regolith simulants [J]. Combustion and Flame, 2015, 162(9): 3333-3340.
    [69]
    RAY C S, REIS S T, SEN S. Characterization and Glass Formation of JSC-1 Lunar and Martian Soil Simulants [C]//Space Technology and Applications International Forum (STAIF-2008). American Institute of Physics. 2008: 908-916.
    [70]
    NASA. NASA-STD-3001, NASA Space Flight Human-System Standard Volume 2: Human Factors, Habitability, and Environment Health [M]. Washington. DC, 2015.
    [71]
    匡松松. 充气可展式月球基地结构设计与热防护分析研究[D]. 杭州: 浙江大学, 2014.
    [72]
    HUGHES S J, WARE J S, DEL CORSO J A, et al. Deployable aeroshell flexible thermal protection system testing [C]//20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Seattle, Washington. 2009: 2926.
    [73]
    P AI, P FENG, and H LIN, et al.Novel self-anchored CFRP cable system: Concept and anchorage behavior [J], Composite Structures 263, 113736(2021).
    [74]
    G DING, P FENG, and Y WANG, et al.Novel pre-clamp lap joint for CFRP plates: Design and experimental study [J], Composite Structures 302, 116240(2022).
    [75]
    L A SODERBLOM, R C ANDERSON, and R E ARVIDSON, et al.Soils of eagle crater and meridiani planum at the opportunity rover landing site [J], Science 306, 570217231726(2004).
    [76]
    INGHAM J, HAAKONSTAD E. Inflatable airlock[P]. US20120318926A1, 2012.
    [77]
    陈为正. 碳纤维布抗滑桩静动力特性研究[D]. 聊城: 聊城大学, 2022.
  • Relative Articles

    [1]ZHOU Zhijun, TIAN Yeqing, ZHANG Mingyi, WANG Kangchao, ZHU Shanshan. Analysis on Bearing Characteristics of Pile Groups with Post-Grouting at Pile Ends in Loess Areas[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 182-190. doi: 10.3724/j.gyjzG22090209
    [2]ZHOU Peng, MA Hailong. NUMERICAL ANALYSIS ON LOAD TRANSFER OF TENSILE PILES AND BOTTOM-UPLIFTED PILES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 147-152. doi: 10.13204/j.gyjzG20040901
    [3]MA Hailong, BAO Yanran, MA Yufei, YAO Wenhong. LOAD-TRANSFER LAWS OF A SINGLE PILE AND DETERMINATION OF REASONABLE POSITIONS FOR GROUTING ON PILE SIDES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 173-176,196. doi: 10.13204/j.gyjzG20091705
    [4]Chen Lanyun, Shu Zhong, Yi Nangai. NUMERICAL SIMULATION OF VERTICAL BEARING CAPACITY OF POST-GROUTING BORED PILES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 78-81. doi: 10.13204/j.gyjz201107018
    [5]Qiang Xiaojun, Wan Changhong, Jiang Huihuang. ANALYSIS AND COMPARISON OF MODEL TEST REINFORCED EMBANKMENT BY PILE NET WITH PILE CAP[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 75-80. doi: 10.13204/j.gyjz200905016
    [6]Shen Baohan, Wang Haiyan, Liu Zhenliang, He Dexin. TEST STUDY OF DX PILE WITH FOUR BULBS AT XI'AN SXD PROJECT[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(2): 1-7. doi: 10.13204/j.gyjz200902001
    [7]Shen Baohan. DX PILE AND ITS SEVERAL PROBLEMS OF VERTICAL BEARING CAPACITIES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 84-95. doi: 10.13204/j.gyjz200908022
    [8]Dong Jinrong. INFLUENCE OF PILE BOTTOM SLIME ON SKIN FRICTION AND BEARING CAPACITY ESTIMATION TO PILE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 93-97. doi: 10.13204/j.gyjz200904021
    [9]Yi Yaolin, Liu Songyu. NUMERICAL ANALYSIS OF BEHAVIOR OF T-SHAPED CEMENT-SOIL DEEP MIXING PILE COMPOSITE FOUNDATION UNDER EMBANKMENT LOADS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 63-68. doi: 10.13204/j.gyjz200811016
    [10]Shen Baohan, Sun Junping, Wang Yan. THE CALCULATION OF VERTICAL COMPRESSIONAL BEARING CAPACITY OF DX PILE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 18-22. doi: 10.13204/j.gyjz200805004
    [11]Shen Baohan. THE CHARACTERISTICS OF LOAD TRANSFER OF DX PILES[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 5-12. doi: 10.13204/j.gyjz200805002
    [12]Luo Chunbo, Zhu Xiangrong, Kong Qinghua, Sun Jinyue. PILE-SOIL INTERACTION ANALYSIS OF O-CELL TESTING PILE BASED ON ELASTIC THEORY[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 60-63. doi: 10.13204/j.gyjz200708016
    [13]Zhang Shimin, Yu Feng. LOAD TRANSFER AND BEARING CAPACITY OF PILES JACKED INTO SANDY DEPOSITS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 61-64. doi: 10.13204/j.gyjz200705016
    [14]Peng Fuming, Yue Qingrui, Hao Jiping, Yang Yongxin. LOAD TRANSFER ANALYSIS OF STEEL STRUCTURES REPAIRED WITH FRP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 26-30,109. doi: 10.13204/j.gyjz200508006
    [15]Pei Jie, Shui Weihou, Cao Hui. NEW MODEL OF LONG PILE LOAD TRANSFER FOR SOFT FOUNDATION IN SHANGHAI[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 50-54,49. doi: 10.13204/j.gyjz200507015
    [16]Li Haiwang, Ju Yuwen, Zhao Mingwei, Liang Renwang. ANALYSIS AND FIELD STATIC LOADING TESTS OF CAST-IN-PLACE PILES WITH BRANCHES AND PLATES[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 21-23. doi: 10.13204/j.gyjz200403006
    [17]Wu Xiongzhi, An Xinzheng, Wu Ruizhi. STUDY ON BEARING MECHANISM OF SOIL-CEMENT PILE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 42-43,41. doi: 10.13204/j.gyjz200406014
    [18]Chun Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON UNIT SHAFT RESISTANCE AND UNIT END RESISTANCE OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 15-18,39. doi: 10.13204/j.gyjz200403004
    [19]Chen Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON BEARING MECHANISM AND LOAD TRANSMISSION MODE OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 5-8. doi: 10.13204/j.gyjz200403002
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.9 %FULLTEXT: 18.9 %META: 81.1 %META: 81.1 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %China: 5.7 %China: 5.7 %北京: 4.7 %北京: 4.7 %十堰: 0.9 %十堰: 0.9 %南京: 0.9 %南京: 0.9 %嘉兴: 0.9 %嘉兴: 0.9 %常州: 0.9 %常州: 0.9 %张家口: 5.7 %张家口: 5.7 %扬州: 2.8 %扬州: 2.8 %杭州: 1.9 %杭州: 1.9 %温州: 0.9 %温州: 0.9 %漯河: 4.7 %漯河: 4.7 %芒廷维尤: 31.1 %芒廷维尤: 31.1 %芝加哥: 0.9 %芝加哥: 0.9 %西宁: 17.9 %西宁: 17.9 %西雅图: 0.9 %西雅图: 0.9 %连云港: 1.9 %连云港: 1.9 %邯郸: 0.9 %邯郸: 0.9 %郑州: 2.8 %郑州: 2.8 %阳泉: 4.7 %阳泉: 4.7 %其他China北京十堰南京嘉兴常州张家口扬州杭州温州漯河芒廷维尤芝加哥西宁西雅图连云港邯郸郑州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (388) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return