Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
BAO Charun, ZHANG Daobo, ZHI Xiao, MA Zhongcheng, FENG Peng, WU Hao. Preparation of a Lunar Regolith Simulant for In-Situ Construction Research: TC-1C[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(1): 176-181. doi: 10.3724/j.gyjzG24110702
Citation: BAO Charun, ZHANG Daobo, ZHI Xiao, MA Zhongcheng, FENG Peng, WU Hao. Preparation of a Lunar Regolith Simulant for In-Situ Construction Research: TC-1C[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(1): 176-181. doi: 10.3724/j.gyjzG24110702

Preparation of a Lunar Regolith Simulant for In-Situ Construction Research: TC-1C

doi: 10.3724/j.gyjzG24110702
  • Received Date: 2024-11-07
    Available Online: 2025-03-28
  • The core objective of human lunar exploration has shifted from "understanding the moon" to a dual focus on "understanding and utilization." In order to meet the requirements for lunar in-situ construction research, a specific method for the preparation and evaluation of simulated lunar regolith was proposed. Using the Chang’e 5 lunar samples as a reference, the study developed a simulated lunar regolith, TC-1C (Tsinghua-China Building Materials Academy-type1 for Construction), and assessed its similarity in four key parameters: phase composition, particle size distribution, particle morphology, and density. The results indicated that the similarity of TC-1C to the actual Chang’e 5 lunar regolith exceeded 0.94.
  • [1]
    吴伟仁, 于登云, 王赤, 等. 月球极区探测的主要科学与技术问题研究 [J]. 深空探测学报, 2020, 7(3): 223-40.
    [2]
    WEIBLEN P, GORDON K. Characteristics of a simulant for lunar surface materials[C]//Proceedings of the Second Conference on Lunar Bases and Space Activities of the 21st Century. Houston:1988.
    [3]
    DESAI C S. Development and mechanical properties of structural materials from lunar simulant [J]. NASA Space Engineering Research Center for Utilization of Local Planetary Resources, 1991,2:297-324.
    [4]
    MCKAY D S, CARTER J L, BOLES W W, et al. JSC-1: a new lunar soil simulant [J]. Engineering, Construction, and Operations in Space IV, 1994, 2: 857-866.
    [5]
    KANAMORI H, UDAGAWA S, YOSHIDA T, et al. Properties of lunar soil simulant manufactured in Japan [M]. Albuquerque:Space 98, 1998: 462-468.
    [6]
    BATTLER M M, SPRAY J G. The Shawmere anorthosite and OB-1 as lunar highland regolith simulants [J]. Planetary and Space Science, 2009, 57(14/15): 2128-2131.
    [7]
    LI Y, LIU J, YUE Z. NAO-1: Lunar highland soil simulant developed in China [J]. Journal of Aerospace Engineering, 2009, 22(1): 53-7.
    [8]
    ZHENG Y, WANG S, OUYANG Z, et al. CAS-1 lunar soil simulant [J]. Advances in Space Research, 2009, 43(3): 448-54.
    [9]
    SONG L, XU J, TANG H, et al. Vacuum sintering behavior and magnetic transformation for high-Ti type basalt simulated lunar regolith [J]. Icarus, 2020, 347, 113810.
    [10]
    SONG L, XU J, FAN S, et al. Vacuum sintered lunar regolith simulant: Pore-forming and thermal conductivity [J]. Ceramics International, 2019, 45(3): 3627-3633.
    [11]
    蒋明镜, 李立青. TJ-1模拟月壤的研制 [J]. 岩土工程学报, 2011, 33(2): 209-214.
    [12]
    邹猛, 李建桥, 刘国敏, 等. 模拟月壤地面力学性质试验研究 [J]. 岩土力学, 2011, 32(4): 1057-61.
    [13]
    贺新星, 肖龙, 黄俊, 等. 模拟月壤研究进展及CUG-1A模拟月壤 [J]. 地质科技情报, 2011,30(4):137-142.
    [14]
    王凯. 钻进取样模拟月壤的主要物理力学性质试验研究[D]. 北京: 清华大学, 2012.
    [15]
    CESARETTI G, DINI E, DE KESTELIER X, et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology [J]. Acta Astronautica, 2014, 93: 430-50.
    [16]
    RYU B H, WANG C C, CHANG I. Development and geotechnical engineering properties of KLS-1 lunar simulant [J]. Journal of Aerospace Engineering, 2018, 31(1), 04017083.
    [17]
    LI C, XIE K, LIU A, et al. The Preparation and characterization of NEU-1 lunar soil simulants [J]. Jom, 2019, 71(4): 1471-1476.
    [18]
    ZHOU S, LU C, ZHU X, et al. Preparation and characterization of high-strength geopolymer based on BH-1 lunar soil simulant with low alkali content [J]. Engineering, 2021, 7(11): 1631-1645.
    [19]
    ZHOU S, YANG Z, ZHANG R, et al. Preparation and evaluation of geopolymer based on BH-2 lunar regolith simulant under lunar surface temperature and vacuum condition [J]. Acta Astronautica, 2021, 189: 90-98.
    [20]
    LI R, ZHOU G, YAN K, et al. Preparation and characterization of a specialized lunar regolith simulant for use in lunar low gravity simulation [J]. International Journal of Mining Science and Technology, 2022, 32(1): 1-15.
    [21]
    RUAN R, YANG W, ZHANG D, et al. A moderate-Ti lunar mare soil simulant: IGG-01 [J]. Acta Astronautica, 2024, 224: 148-60.
    [22]
    胡家骏, 俞可权, 郭晓潞. 基于"嫦娥五号"月壤的TJC-1模拟月壤研制 [J]. 航天器环境工程, 2024, 41(4): 389-396.
    [23]
    裴照宇, 王琼. 国际月球科研站资源利用发展路线战略构想 [J]. 宇航学报, 2024, 45(4): 625-637.
    [24]
    SMITHERS G A, NEHLS M K, HOVATER M A, et al. A one-piece lunar regolith bag garage prototype [R]. Huntsville: Marshall Space Flight Center,2007.
    [25]
    HOELZER H D, FOURROUX K A, RICKMAN D L, et al. Figures of merit software: description, user’s guide, installation notes, versions description, and license agreement [R]. Huntsville:Marshall Space Flight Center, 2011.
    [26]
    ISO. Space systems:Lunar simulants: ISO 10788:2014[S]. Geneva:International Organization Standardization,2014.
    [27]
    ZHANG H, ZHANG X, ZHANG G, et al. Size, morphology, and composition of lunar samples returned by Chang’E-5 mission [J]. Science China Physics, Mechanics & Astronomy, 2021, 65(2),229511.
    [28]
    LI C, HU H, YANG M F, et al. Characteristics of the lunar samples returned by the Chang’E-5 mission [J]. National Science Review, 2022, 9(2), nwab188.
    [29]
    CARRIER III W D, OLHOEFT G R, MENDELL W. Physical properties of the lunar surface [M]. London:Cambridge University Press,1991.
  • Relative Articles

    [1]ZHAO Jiacheng, LUO Yuxuan, ZHANG Daobo, BAO Charun, FENG Peng. A Novel Approach for Martian Base Construction Using In-Situ Resources[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 102-114. doi: 10.3724/j.gyjzG23092901
    [2]ZHANG Bo, QU Songzhao, LIU Guanghui, ZHANG Bin, MA Zhengwei, SUN Qing. In-Situ Experiments on Cyclic Uplift Bearing Characteristics of Helical Piles in Silt[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 204-210. doi: 10.13204/j.gyjzG22082002
    [3]LI Yunfu, ZHANG Hongwei, MA Bo, WU Yanqi, LI Shengli. Characteristic Analysis of AE Signal Parameters of Masonry Structures in Axial Compression and In-Situ Axial Compression Tests[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 8-11,63. doi: 10.13204/j.gyjzG20111210
    [4]WU Jiaxin, WANG Yu, WU Lei. Experimental Research on Mechanical Properties of In-Situ Printed Concrete Slabs[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 61-67,93. doi: 10.13204/j.gyjzG22092808
    [5]FENG Peng, BAO Charun, ZHANG Daobo, YUE Qingrui, QI Junfeng, ZUO Yang. CONSTRUCTION TECHNOLOGY FOR LUNAR BASES USING LUNAR IN-SITU RESOURCES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 169-178. doi: 10.13204/j.gyjzG20090813
    [6]CAI Jianguo, ZHANG Qian, WANG Liwu, DU Caixia, ZHANG Huizhong, WANG Yongbin, WU Shiqing. RESEARCH ON IN-SITU FORMING TECHNIQUE OF THE LUNAR SOIL AND ITS STRUCTURE SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 42-47,83. doi: 10.13204/j.gyjzG21020403
    [7]ZHOU Yiyi, SHU Zhan, ZHOU Changfeng, JIA LiangJiu. DESIGN AND OPTIMIZATION OF NEGATIVE POISSON'S RATIO OF ENERGY CONSUMPTION STEEL PLATE BASED ON INTELLIGENT CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(2): 137-142,157. doi: 10.13204/j.gyjz202002021
    [8]CHEN Bin, ZHU Zhaoqing, FENG Bing, LI Panfeng, DING Shijun. IN-SITU TEST RESEARCH ON UPLIFT BEARING CAPACITY OF SCREWANCHOR IN SOFT GROUND OF MIRE AREA[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 71-74,132. doi: 10.13204/j.gyjz202005012
    [13]Zeng Zhongzhong, Xia Haishan, Chen Yongquan. THE INDUSTRIALIZED CONSTRUCTION OF ZERO-ENERGY SOLAR HOUSE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 62-65. doi: 10.13204/j.gyjz201501011
    [14]Bai Xiaoyu, Zhang Mingyi, Liu He. IN-SITU TEST STUDY ON BEARING BEHAVIOR OF ANTI-FLOATING MICROPILE IN WEATHERED ROCK SITE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 94-97. doi: 10.13204/j.gyjz201402021
    [15]Lin Chuan, Fang Zhiyong. THE TECHNICAL TRIAL IN THE CONSTRUCTING OF ENERGY-SAVING COTTAGES AND SOME EXPERIENCE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(12): 16-18,38. doi: 10.13204/j.gyjz201012005
    [16]Shui Weihou, Liang Yonghui, Zhan Jinlin. FULL-SCALE LARGE FIELD TESTS OF PILE-RAFT IN SOFT SOIL AREA[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 88-92. doi: 10.13204/j.gyjz200904020
    [17]Shen Ren, Chen Xi-rong, Xu Mao-ye. DESIGN AND CONSTRUCTION OF MULTI STOREY LOOM MILL BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(11): 32-33,60. doi: 10.13204/j.gyjz200711009
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.0 %FULLTEXT: 15.0 %META: 80.0 %META: 80.0 %PDF: 5.0 %PDF: 5.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 100.0 %其他: 100.0 %其他

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (15) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return