Citation: | BAO Charun, ZHANG Daobo, ZHI Xiao, MA Zhongcheng, FENG Peng, WU Hao. Preparation of a Lunar Regolith Simulant for In-Situ Construction Research: TC-1C[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(1): 176-181. doi: 10.3724/j.gyjzG24110702 |
[1] |
吴伟仁, 于登云, 王赤, 等. 月球极区探测的主要科学与技术问题研究 [J]. 深空探测学报, 2020, 7(3): 223-40.
|
[2] |
WEIBLEN P, GORDON K. Characteristics of a simulant for lunar surface materials[C]//Proceedings of the Second Conference on Lunar Bases and Space Activities of the 21st Century. Houston:1988.
|
[3] |
DESAI C S. Development and mechanical properties of structural materials from lunar simulant [J]. NASA Space Engineering Research Center for Utilization of Local Planetary Resources, 1991,2:297-324.
|
[4] |
MCKAY D S, CARTER J L, BOLES W W, et al. JSC-1: a new lunar soil simulant [J]. Engineering, Construction, and Operations in Space IV, 1994, 2: 857-866.
|
[5] |
KANAMORI H, UDAGAWA S, YOSHIDA T, et al. Properties of lunar soil simulant manufactured in Japan [M]. Albuquerque:Space 98, 1998: 462-468.
|
[6] |
BATTLER M M, SPRAY J G. The Shawmere anorthosite and OB-1 as lunar highland regolith simulants [J]. Planetary and Space Science, 2009, 57(14/15): 2128-2131.
|
[7] |
LI Y, LIU J, YUE Z. NAO-1: Lunar highland soil simulant developed in China [J]. Journal of Aerospace Engineering, 2009, 22(1): 53-7.
|
[8] |
ZHENG Y, WANG S, OUYANG Z, et al. CAS-1 lunar soil simulant [J]. Advances in Space Research, 2009, 43(3): 448-54.
|
[9] |
SONG L, XU J, TANG H, et al. Vacuum sintering behavior and magnetic transformation for high-Ti type basalt simulated lunar regolith [J]. Icarus, 2020, 347, 113810.
|
[10] |
SONG L, XU J, FAN S, et al. Vacuum sintered lunar regolith simulant: Pore-forming and thermal conductivity [J]. Ceramics International, 2019, 45(3): 3627-3633.
|
[11] |
蒋明镜, 李立青. TJ-1模拟月壤的研制 [J]. 岩土工程学报, 2011, 33(2): 209-214.
|
[12] |
邹猛, 李建桥, 刘国敏, 等. 模拟月壤地面力学性质试验研究 [J]. 岩土力学, 2011, 32(4): 1057-61.
|
[13] |
贺新星, 肖龙, 黄俊, 等. 模拟月壤研究进展及CUG-1A模拟月壤 [J]. 地质科技情报, 2011,30(4):137-142.
|
[14] |
王凯. 钻进取样模拟月壤的主要物理力学性质试验研究[D]. 北京: 清华大学, 2012.
|
[15] |
CESARETTI G, DINI E, DE KESTELIER X, et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology [J]. Acta Astronautica, 2014, 93: 430-50.
|
[16] |
RYU B H, WANG C C, CHANG I. Development and geotechnical engineering properties of KLS-1 lunar simulant [J]. Journal of Aerospace Engineering, 2018, 31(1), 04017083.
|
[17] |
LI C, XIE K, LIU A, et al. The Preparation and characterization of NEU-1 lunar soil simulants [J]. Jom, 2019, 71(4): 1471-1476.
|
[18] |
ZHOU S, LU C, ZHU X, et al. Preparation and characterization of high-strength geopolymer based on BH-1 lunar soil simulant with low alkali content [J]. Engineering, 2021, 7(11): 1631-1645.
|
[19] |
ZHOU S, YANG Z, ZHANG R, et al. Preparation and evaluation of geopolymer based on BH-2 lunar regolith simulant under lunar surface temperature and vacuum condition [J]. Acta Astronautica, 2021, 189: 90-98.
|
[20] |
LI R, ZHOU G, YAN K, et al. Preparation and characterization of a specialized lunar regolith simulant for use in lunar low gravity simulation [J]. International Journal of Mining Science and Technology, 2022, 32(1): 1-15.
|
[21] |
RUAN R, YANG W, ZHANG D, et al. A moderate-Ti lunar mare soil simulant: IGG-01 [J]. Acta Astronautica, 2024, 224: 148-60.
|
[22] |
胡家骏, 俞可权, 郭晓潞. 基于"嫦娥五号"月壤的TJC-1模拟月壤研制 [J]. 航天器环境工程, 2024, 41(4): 389-396.
|
[23] |
裴照宇, 王琼. 国际月球科研站资源利用发展路线战略构想 [J]. 宇航学报, 2024, 45(4): 625-637.
|
[24] |
SMITHERS G A, NEHLS M K, HOVATER M A, et al. A one-piece lunar regolith bag garage prototype [R]. Huntsville: Marshall Space Flight Center,2007.
|
[25] |
HOELZER H D, FOURROUX K A, RICKMAN D L, et al. Figures of merit software: description, user’s guide, installation notes, versions description, and license agreement [R]. Huntsville:Marshall Space Flight Center, 2011.
|
[26] |
ISO. Space systems:Lunar simulants: ISO 10788:2014[S]. Geneva:International Organization Standardization,2014.
|
[27] |
ZHANG H, ZHANG X, ZHANG G, et al. Size, morphology, and composition of lunar samples returned by Chang’E-5 mission [J]. Science China Physics, Mechanics & Astronomy, 2021, 65(2),229511.
|
[28] |
LI C, HU H, YANG M F, et al. Characteristics of the lunar samples returned by the Chang’E-5 mission [J]. National Science Review, 2022, 9(2), nwab188.
|
[29] |
CARRIER III W D, OLHOEFT G R, MENDELL W. Physical properties of the lunar surface [M]. London:Cambridge University Press,1991.
|
[1] | ZHAO Jiacheng, LUO Yuxuan, ZHANG Daobo, BAO Charun, FENG Peng. A Novel Approach for Martian Base Construction Using In-Situ Resources[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 102-114. doi: 10.3724/j.gyjzG23092901 |
[2] | ZHANG Bo, QU Songzhao, LIU Guanghui, ZHANG Bin, MA Zhengwei, SUN Qing. In-Situ Experiments on Cyclic Uplift Bearing Characteristics of Helical Piles in Silt[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 204-210. doi: 10.13204/j.gyjzG22082002 |
[3] | LI Yunfu, ZHANG Hongwei, MA Bo, WU Yanqi, LI Shengli. Characteristic Analysis of AE Signal Parameters of Masonry Structures in Axial Compression and In-Situ Axial Compression Tests[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 8-11,63. doi: 10.13204/j.gyjzG20111210 |
[4] | WU Jiaxin, WANG Yu, WU Lei. Experimental Research on Mechanical Properties of In-Situ Printed Concrete Slabs[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 61-67,93. doi: 10.13204/j.gyjzG22092808 |
[5] | FENG Peng, BAO Charun, ZHANG Daobo, YUE Qingrui, QI Junfeng, ZUO Yang. CONSTRUCTION TECHNOLOGY FOR LUNAR BASES USING LUNAR IN-SITU RESOURCES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 169-178. doi: 10.13204/j.gyjzG20090813 |
[6] | CAI Jianguo, ZHANG Qian, WANG Liwu, DU Caixia, ZHANG Huizhong, WANG Yongbin, WU Shiqing. RESEARCH ON IN-SITU FORMING TECHNIQUE OF THE LUNAR SOIL AND ITS STRUCTURE SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 42-47,83. doi: 10.13204/j.gyjzG21020403 |
[7] | ZHOU Yiyi, SHU Zhan, ZHOU Changfeng, JIA LiangJiu. DESIGN AND OPTIMIZATION OF NEGATIVE POISSON'S RATIO OF ENERGY CONSUMPTION STEEL PLATE BASED ON INTELLIGENT CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(2): 137-142,157. doi: 10.13204/j.gyjz202002021 |
[8] | CHEN Bin, ZHU Zhaoqing, FENG Bing, LI Panfeng, DING Shijun. IN-SITU TEST RESEARCH ON UPLIFT BEARING CAPACITY OF SCREWANCHOR IN SOFT GROUND OF MIRE AREA[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 71-74,132. doi: 10.13204/j.gyjz202005012 |
[13] | Zeng Zhongzhong, Xia Haishan, Chen Yongquan. THE INDUSTRIALIZED CONSTRUCTION OF ZERO-ENERGY SOLAR HOUSE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 62-65. doi: 10.13204/j.gyjz201501011 |
[14] | Bai Xiaoyu, Zhang Mingyi, Liu He. IN-SITU TEST STUDY ON BEARING BEHAVIOR OF ANTI-FLOATING MICROPILE IN WEATHERED ROCK SITE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 94-97. doi: 10.13204/j.gyjz201402021 |
[15] | Lin Chuan, Fang Zhiyong. THE TECHNICAL TRIAL IN THE CONSTRUCTING OF ENERGY-SAVING COTTAGES AND SOME EXPERIENCE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(12): 16-18,38. doi: 10.13204/j.gyjz201012005 |
[16] | Shui Weihou, Liang Yonghui, Zhan Jinlin. FULL-SCALE LARGE FIELD TESTS OF PILE-RAFT IN SOFT SOIL AREA[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 88-92. doi: 10.13204/j.gyjz200904020 |
[17] | Shen Ren, Chen Xi-rong, Xu Mao-ye. DESIGN AND CONSTRUCTION OF MULTI STOREY LOOM MILL BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(11): 32-33,60. doi: 10.13204/j.gyjz200711009 |