Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Tong Genshu, Xu Yuanjie, Zhang Lei. ANALYSIS OF GLOBAL STABILITY OF COLD-FORMED Z PURLINS UNDER WIND SUCTION[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 26-33. doi: 10.13204/j.gyjz201312004
Citation: ZHANG Bo, QU Songzhao, LIU Guanghui, ZHANG Bin, MA Zhengwei, SUN Qing. In-Situ Experiments on Cyclic Uplift Bearing Characteristics of Helical Piles in Silt[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 204-210. doi: 10.13204/j.gyjzG22082002

In-Situ Experiments on Cyclic Uplift Bearing Characteristics of Helical Piles in Silt

doi: 10.13204/j.gyjzG22082002
  • Received Date: 2022-08-20
    Available Online: 2024-02-28
  • Helical piles are widely used in foundations of towers, wind turbine generators and other structures under cyclic loads because of their larger uplift bearing capacities. In recent years, with the increase of extreme strong wind disasters, helical piles have been widely used as anchorage facilities for anti galloping cables of transimission wires in transmission lines. However, there are few studies on the bearing characteristics of helical piles under cyclic loading, and there is no introduction on the bearing capacity calculation method in the relevant regulations and codes. Thus, the monotonic and cyclic in-situ loading tests of helical piles in silt were conducted, the cyclic uplift mechanical characteristics of helical piles were explorated. The results showed that the cumulative displacement of the helical pile was no more than 25 mm when the soil deformation was stable under cyclic action of 50% of static ultimate bearing capacities. The cumulative displacement of helical piles with double helix plates under cyclic uplift loads was smallest, which was about half the cumulative displacement of other helical piles with a single helix plate. When the bearing capacity of helical piles was insufficient, the foundation deformation increased sharply, and a radial crack centered on helical piles appeared on the ground. In the whole test process, the load-displacement skeleton curves of helical piles under cyclic loads were always lower than that of helical piles under static loads. After the cycles, both the load-displacement curves basically coincided under static loads. The uplift bearing capacity of helical piles was mainly composed of side resistance of anchor rods and end resistance of helix plates. Under cyclic uplift loads, the cumulative shrinkage of soil in shear zones of anchor bolt interfaces led to reduction of normal stress, and the uplift bearing capacity of helical piles was provided by helix plates mainly.
  • [1]
    中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议[EB/OL]. (2020-11-03) [2022-01-15]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
    [2]
    李士锋,李宏男,张卓群,等.强风荷载作用下输电线路的连续倒塌破坏分析[J].防灾减灾工程学报,2017,37(5):835-841.
    [3]
    陈波,宋欣欣,吴镜泊.输电塔线体系力学模型研究进展[J].工程力学,2021,38(5):1-21.
    [4]
    SPAGNOLI G, HOLLANDA CAVALCANTI TSUHA C. A review on the behavior of helical piles as a potential offshore foundation system[J]. Marine Georesources & Geotechnology, 2020, 38(9):1013-1036.
    [5]
    郝冬雪,陈榕,袁驰,等.密砂中预埋螺旋锚循环上拔承载特性离心机试验研究[J].岩石力学与工程学报,2021,40(增刊1):2896-2904.
    [6]
    CHAN S F, HANNA T H. Repeated loading on single piles in sand[J]. Journal of the Geotechnical Engineering Division, 1980, 106(2):171-188.
    [7]
    DEJONG J T, RANDOLPH M F, WHITE D J. Interface load transfer degradation during cyclic loading:a microscale investigation[J]. Journal of the Japanese Geotechnical Society, 2003, 43(4):81-93.
    [8]
    AL-DOURI R, POULOS H G. Cyclic behaviour of pile groups in calcareous sediments[J]. Soils and Foundations, 1994, 34(2):49-59.
    [9]
    CHIN J T, POULOS H G. Tests on model jacked piles in calcareous sand[J]. Geotechnical Testing Journal, 1996, 19(2):164-180.
    [10]
    TSUHA C D H C, FORAY P Y, JARDINE R J, et al. Behaviour of displacement piles in sand under cyclic axial loading[J]. Soils and Foundations, 2012, 52(3):393-410.
    [11]
    JARDINE R J, AND STANDING J R. Field axial cyclic loading experiments on piles driven in sand[J]. Soils and Foundations, 2012, 52(4):723-736.
    [12]
    SCHIAVON J A, TSUHA C H C, THOREL L. Cyclic and post cyclic monotonic response of a single-helix anchor in sand[J]. Geotechnique Letters, 2017, 7(1):11-17.
    [13]
    CLEMENCE S P, SMITHLING A P. Dynamic uplift capacity of helical anchors in sand[C]//Geomechanics-Interaction:Proceedings of the 4th Australia-New Zealand Conference on Geomechanics. 1984.
    [14]
    CERATO A B, VARGAS T M, ALLRED S M. A critical review:state of knowledge in seismic behaviour of helical piles[J]. The Journal of the Deep Foundations Institute, 2017, 11(1):39-87.
    [15]
    LI W D, DENG L J, CHALATURNYK R. Centrifuge modeling of the behaviour of helical piles in cohesive soils from installation and axial loading[J/OL]. Soils and Foundations, 2022,62[2022-08-18].https://doi.org/10.1016/j.sandf.2022.101141.
    [16]
    国家能源局. 架空输电线路基础设计规程:DL/T 5219-2023[S]. 北京:中国计划出版社,2023.
    [17]
    IEEE Power Engineering Society and American Society of Civil Engineers. IEEE guide for transmission structure foundation design and testing:IEEE Std 691-2001[S]. New York:The Institute of Electrical and Electronics Engineers, Inc., 2001.
    [18]
    汪滨. 螺旋锚技术及其在工程中的应用[M]. 北京:中国水利水电出版社, 2005.
    [19]
    SCHIAVON J A. Behaviour of helical anchors subjected to cyclic loadings[D]. Sǎo Josédos Campus:Instituteo Technológico de Aeronáutica, 2016.
    [20]
    国家电网有限公司. 架空输电线路螺旋锚基础设计规范:Q/GDW 10584-2022[S]. 北京:中国电力出版社,2018.
    [21]
    屈讼昭,郭咏华,王仪,等.大锚片螺旋锚在粉质黏土中的下压承载性能[J].土木与环境工程学报(中英文),2021,43(5):34-44.
    [22]
    屈讼昭,郭咏华,王仪,等.大锚片螺旋锚在粉质黏土中上拔受力性能的原位试验研究及数值模拟分析[J].岩石力学与工程学报,2020,39(增刊2):3655-3668.
  • Relative Articles

    [1]ZHAO Qiu, CHEN Peng, LIN Zhiping, ZHANG Junchao. A Calculation Method of Overall Stability for Flat Plate Stiffened Panels Under Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 138-146. doi: 10.3724/j.gyjzG22020911
    [2]PENG Daibin, LIU Zhanke. Research on Critical Moment of Lateral Restrained Beams Under End Moments[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 144-150. doi: 10.13204/j.gyjzG20082506
    [3]WANG Yuwei, GUO Yanlin, WANG Mengzheng. RESEARCH PROGRESS OF CONCRETE-INFILLED DOUBLE STEEL CORRUGATED-PLATE COMPOSITE WALLS WITH T-SECTION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 181-188. doi: 10.13204/j.gyjzG21052612
    [4]Sun Defa. ANALYSIS OF EFFECTIVE SECTION OF COLD-FORMED THIN-WALL LIPPED CHANNEL PURLINS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 131-135. doi: 10.13204/j.gyjz201502027
    [5]Du Huilin, Tong Genshu, Song Changyong, Zhang Lei. TORSIONAL RESTRAINTS OF CORRUGATED SHEETING TO PURLIN THROUGH SLIPPABLE CLIPS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 34-41. doi: 10.13204/j.gyjz201304007
    [6]Tong Genshu, Wu Qiang, Zhang Lei. BENDING AND TWISTING ABOUT A CONSTRAINED AXIS OF C-SECTION PURLINS WITH ONE SAG ROD AT MIDSPAN[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 12-20. doi: 10.13204/j.gyjz201312002
    [7]Tong Genshu, Wu Qiang, Zhang Lei. BENDING AND TWISTING ABOUT A CONSTRAINED AXIS OF Z-SECTION PURLINS WITH ONE SAG ROD AT MIDSPAN[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 1-11. doi: 10.13204/j.gyjz201312001
    [8]Wu Qiang, Tong Genshu, Zhang Lei. ANALYSIS OF TWISTING ABOUT UPPER FLANGE OF C-SECTION PURLIN WITH TWO SAG RODS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 21-25. doi: 10.13204/j.gyjz201312003
    [9]Yan Xiaoxiao, Zhang Lei, Tong Genshu. STABILITY OF DOUBLY SYMMETRIC I-SECTIONAL CANTILEVERS WITH DIFFERENT BOUNDARY CONDITIONS AT TIP[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 13-18. doi: 10.13204/j.gyjz201304003
    [10]Tong Genshu. EFFICIENCY OF SAG RODS AS LATERAL SUPPORTS FOR STABILITY OF PURLINS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 52-56,65. doi: 10.13204/j.gyjz201312008
    [11]Tong Genshu, Xu Yuanjie, Zhang Lei. ANALYSIS OF GLOBAL STABILITY OF C-PURLINS UNDER WIND SUCTION[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 34-37,11. doi: 10.13204/j.gyjz201312005
    [12]Wang Yuanqing, Yuan Huanxin, Shi Yongjiu, Yang Lu. RESEARCH ADVANCES IN STABILITY OF STAINLESS STEEL STRUCTURAL MEMBERS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 1-11. doi: 10.13204/j.gyjz2011205001
    [13]Song Guang, Song Erxiang, Liu Jianguo. RELATIONSHIP BETWEEN GLOBAL STABILITY AND LOCAL STABILITY ANALYSIS OF SOIL NAILING[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(12): 46-52. doi: 10.13204/j.gyjz201212011
    [14]Ban Huiyong, Shi Gang, Shi Yongjiu, Wang Yuanqing. EFFECT OF INITIAL IMPERFECTIONS ON OVERALL BUCKLING BEHAVIOR OF HIGH STRENGTH STEEL COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(1): 37-45,50. doi: 10.13204/j.gyjz201201007
    [15]Tong Genshu, Wu Qiang. NOTIONAL LOAD ON BOTTOM FLANGE IN STRENGTH CALCULATION OF Z- SHAPED CROSS SECTION PURLIN[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 136-142. doi: 10.13204/j.gyjz201204028
    [16]Tong Genshu, Shao Feng. TORSIONAL RESTRAINT ON PURLINS BY CORRUGATED STEEL SHEET[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(3): 111-115,134. doi: 10.13204/j.gyjz201003025
    [17]Nie Shaofeng, Wang Wenke, Zhou Tianhua, He Baokang. STUDY ON MECHANICAL BEHAVIOR OF HIGH STRENGTH COLD-FORMED STEEL CONTINUOUS HAT SECTION PURLIN[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(7): 92-94,91. doi: 10.13204/j.gyjz200907025
    [18]Wang Xintang, Ji Yao, Wang Jianping. COMPUTATION OF BUCKLING LOAD OF STEEL FRAMES WITH SEMI-RIGID CONNECTIONS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(4): 82-86. doi: 10.13204/j.gyjz200804021
    [19]Zhang Ailin, Liu Xuechun, Ge Jiaqi, Zhang Baoqin, Zhang Xiaofeng. STABILITY ANALYSIS OF SUSPEND-DOME OF BADMINTON GYMNASIUM FOR 2008 OLYMPIC GAMES[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(1): 8-11,46. doi: 10.13204/j.gyjz200701003
    [20]Zhang Yang, Zhang Yaochun. IN-PLANE GLOBAL STABILITY OF SPACE LATTICE TILTED COLUMN FRAME OF TRIANGLE SECTION[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 71-74. doi: 10.13204/j.gyjz200503025
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.1 %FULLTEXT: 19.1 %META: 80.9 %META: 80.9 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.7 %其他: 3.7 %China: 2.9 %China: 2.9 %San Lorenzo: 0.7 %San Lorenzo: 0.7 %上海: 2.9 %上海: 2.9 %北京: 3.7 %北京: 3.7 %南京: 0.7 %南京: 0.7 %厦门: 0.7 %厦门: 0.7 %台州: 2.2 %台州: 2.2 %圣保罗: 2.2 %圣保罗: 2.2 %埃德蒙顿: 2.2 %埃德蒙顿: 2.2 %天津: 0.7 %天津: 0.7 %宜春: 0.7 %宜春: 0.7 %广州: 2.2 %广州: 2.2 %张家口: 0.7 %张家口: 0.7 %徐州: 0.7 %徐州: 0.7 %成都: 1.5 %成都: 1.5 %揭阳: 2.2 %揭阳: 2.2 %杭州: 2.9 %杭州: 2.9 %枣庄: 1.5 %枣庄: 1.5 %武汉: 5.9 %武汉: 5.9 %池州: 0.7 %池州: 0.7 %温州: 0.7 %温州: 0.7 %湖州: 1.5 %湖州: 1.5 %漯河: 0.7 %漯河: 0.7 %芒廷维尤: 33.1 %芒廷维尤: 33.1 %苏州: 0.7 %苏州: 0.7 %莆田: 0.7 %莆田: 0.7 %蚌埠: 0.7 %蚌埠: 0.7 %衢州: 0.7 %衢州: 0.7 %西宁: 14.7 %西宁: 14.7 %西安: 0.7 %西安: 0.7 %重庆: 1.5 %重庆: 1.5 %长沙: 0.7 %长沙: 0.7 %青岛: 0.7 %青岛: 0.7 %鹰潭: 0.7 %鹰潭: 0.7 %其他ChinaSan Lorenzo上海北京南京厦门台州圣保罗埃德蒙顿天津宜春广州张家口徐州成都揭阳杭州枣庄武汉池州温州湖州漯河芒廷维尤苏州莆田蚌埠衢州西宁西安重庆长沙青岛鹰潭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (87) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return