Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHANG Bo, QU Songzhao, LIU Guanghui, ZHANG Bin, MA Zhengwei, SUN Qing. In-Situ Experiments on Cyclic Uplift Bearing Characteristics of Helical Piles in Silt[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 204-210. doi: 10.13204/j.gyjzG22082002
Citation: ZHANG Bo, QU Songzhao, LIU Guanghui, ZHANG Bin, MA Zhengwei, SUN Qing. In-Situ Experiments on Cyclic Uplift Bearing Characteristics of Helical Piles in Silt[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 204-210. doi: 10.13204/j.gyjzG22082002

In-Situ Experiments on Cyclic Uplift Bearing Characteristics of Helical Piles in Silt

doi: 10.13204/j.gyjzG22082002
  • Received Date: 2022-08-20
    Available Online: 2024-02-28
  • Helical piles are widely used in foundations of towers, wind turbine generators and other structures under cyclic loads because of their larger uplift bearing capacities. In recent years, with the increase of extreme strong wind disasters, helical piles have been widely used as anchorage facilities for anti galloping cables of transimission wires in transmission lines. However, there are few studies on the bearing characteristics of helical piles under cyclic loading, and there is no introduction on the bearing capacity calculation method in the relevant regulations and codes. Thus, the monotonic and cyclic in-situ loading tests of helical piles in silt were conducted, the cyclic uplift mechanical characteristics of helical piles were explorated. The results showed that the cumulative displacement of the helical pile was no more than 25 mm when the soil deformation was stable under cyclic action of 50% of static ultimate bearing capacities. The cumulative displacement of helical piles with double helix plates under cyclic uplift loads was smallest, which was about half the cumulative displacement of other helical piles with a single helix plate. When the bearing capacity of helical piles was insufficient, the foundation deformation increased sharply, and a radial crack centered on helical piles appeared on the ground. In the whole test process, the load-displacement skeleton curves of helical piles under cyclic loads were always lower than that of helical piles under static loads. After the cycles, both the load-displacement curves basically coincided under static loads. The uplift bearing capacity of helical piles was mainly composed of side resistance of anchor rods and end resistance of helix plates. Under cyclic uplift loads, the cumulative shrinkage of soil in shear zones of anchor bolt interfaces led to reduction of normal stress, and the uplift bearing capacity of helical piles was provided by helix plates mainly.
  • [1]
    中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议[EB/OL]. (2020-11-03) [2022-01-15]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
    [2]
    李士锋,李宏男,张卓群,等.强风荷载作用下输电线路的连续倒塌破坏分析[J].防灾减灾工程学报,2017,37(5):835-841.
    [3]
    陈波,宋欣欣,吴镜泊.输电塔线体系力学模型研究进展[J].工程力学,2021,38(5):1-21.
    [4]
    SPAGNOLI G, HOLLANDA CAVALCANTI TSUHA C. A review on the behavior of helical piles as a potential offshore foundation system[J]. Marine Georesources & Geotechnology, 2020, 38(9):1013-1036.
    [5]
    郝冬雪,陈榕,袁驰,等.密砂中预埋螺旋锚循环上拔承载特性离心机试验研究[J].岩石力学与工程学报,2021,40(增刊1):2896-2904.
    [6]
    CHAN S F, HANNA T H. Repeated loading on single piles in sand[J]. Journal of the Geotechnical Engineering Division, 1980, 106(2):171-188.
    [7]
    DEJONG J T, RANDOLPH M F, WHITE D J. Interface load transfer degradation during cyclic loading:a microscale investigation[J]. Journal of the Japanese Geotechnical Society, 2003, 43(4):81-93.
    [8]
    AL-DOURI R, POULOS H G. Cyclic behaviour of pile groups in calcareous sediments[J]. Soils and Foundations, 1994, 34(2):49-59.
    [9]
    CHIN J T, POULOS H G. Tests on model jacked piles in calcareous sand[J]. Geotechnical Testing Journal, 1996, 19(2):164-180.
    [10]
    TSUHA C D H C, FORAY P Y, JARDINE R J, et al. Behaviour of displacement piles in sand under cyclic axial loading[J]. Soils and Foundations, 2012, 52(3):393-410.
    [11]
    JARDINE R J, AND STANDING J R. Field axial cyclic loading experiments on piles driven in sand[J]. Soils and Foundations, 2012, 52(4):723-736.
    [12]
    SCHIAVON J A, TSUHA C H C, THOREL L. Cyclic and post cyclic monotonic response of a single-helix anchor in sand[J]. Geotechnique Letters, 2017, 7(1):11-17.
    [13]
    CLEMENCE S P, SMITHLING A P. Dynamic uplift capacity of helical anchors in sand[C]//Geomechanics-Interaction:Proceedings of the 4th Australia-New Zealand Conference on Geomechanics. 1984.
    [14]
    CERATO A B, VARGAS T M, ALLRED S M. A critical review:state of knowledge in seismic behaviour of helical piles[J]. The Journal of the Deep Foundations Institute, 2017, 11(1):39-87.
    [15]
    LI W D, DENG L J, CHALATURNYK R. Centrifuge modeling of the behaviour of helical piles in cohesive soils from installation and axial loading[J/OL]. Soils and Foundations, 2022,62[2022-08-18].https://doi.org/10.1016/j.sandf.2022.101141.
    [16]
    国家能源局. 架空输电线路基础设计规程:DL/T 5219-2023[S]. 北京:中国计划出版社,2023.
    [17]
    IEEE Power Engineering Society and American Society of Civil Engineers. IEEE guide for transmission structure foundation design and testing:IEEE Std 691-2001[S]. New York:The Institute of Electrical and Electronics Engineers, Inc., 2001.
    [18]
    汪滨. 螺旋锚技术及其在工程中的应用[M]. 北京:中国水利水电出版社, 2005.
    [19]
    SCHIAVON J A. Behaviour of helical anchors subjected to cyclic loadings[D]. Sǎo Josédos Campus:Instituteo Technológico de Aeronáutica, 2016.
    [20]
    国家电网有限公司. 架空输电线路螺旋锚基础设计规范:Q/GDW 10584-2022[S]. 北京:中国电力出版社,2018.
    [21]
    屈讼昭,郭咏华,王仪,等.大锚片螺旋锚在粉质黏土中的下压承载性能[J].土木与环境工程学报(中英文),2021,43(5):34-44.
    [22]
    屈讼昭,郭咏华,王仪,等.大锚片螺旋锚在粉质黏土中上拔受力性能的原位试验研究及数值模拟分析[J].岩石力学与工程学报,2020,39(增刊2):3655-3668.
  • Relative Articles

    [1]DING Shijun, YANG Wenzhi, ZHU Zhaoqing, YUAN Chi. Analysis on Uplift Bearing Mechanisms and Failure Modes of Anchor Bolts in Hard Rock Foundation[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(8): 191-198. doi: 10.13204/j.gyjzG22060608
    [2]ZONG Zhongling, CAO Bo, HUANG Yunhan, ZHUANG Xiaoxuan, ZHANG Kui, LIN Xiangjun. Experimental Study on Compressive Bearing Capacity of Helical Steel Grounting Pipe Piles[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 127-132. doi: 10.13204/j.gyjzG21060812
    [3]XUE Feng, DING Shijun, LI Haimei, QIN Zhiwu, ZHANG Haicheng, TONG Hailin, HE Zengxin. MODEL TESTS OF PULL-OUT RESISTANCE FOR HELICAL ANCHORS AND BEARING CHARACTERISTIC ANALYSIS IN REMOLDED GRAVEL FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 150-155. doi: 10.13204/j.gyjzG20112804
    [4]CHEN Bin, ZHU Zhaoqing, FENG Bing, LI Panfeng, DING Shijun. IN-SITU TEST RESEARCH ON UPLIFT BEARING CAPACITY OF SCREWANCHOR IN SOFT GROUND OF MIRE AREA[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 71-74,132. doi: 10.13204/j.gyjz202005012
    [6]Fan Qinglai, Zheng Jing. BEARING CAPACITY OF SKIRTED FOUNDATIONS SUBJECTED TO CYCLIC COMBINED LOADING[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 109-112. doi: 10.13204/j.gyjz201501021
    [7]Cheng Liangkui Fan Jinglun Zhang Peiwen Zhou Jianming, . THE WAYS AND METHODS FOR IMPROVING THE PULL-OUT BEARING CAPACITIES OF GROUND ANCHORS AND REINFORCEMENT EFFECT[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 103-109. doi: 10.13204/j.gyjz201506021
    [8]Yang Zuan Cheng Xiaohui, . EXPERIMENTAL STUDY OF DETERIORATED HISTORIC MASONRY STRUCTURES REINFORCED BY MICROBIAL GROUTING METHOD[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 48-53. doi: 10.13204/j.gyjz201507010
    [9]Bai Xiaoyu, Zhang Mingyi, Liu He. IN-SITU TEST STUDY ON BEARING BEHAVIOR OF ANTI-FLOATING MICROPILE IN WEATHERED ROCK SITE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 94-97. doi: 10.13204/j.gyjz201402021
    [10]Wang Bin, Zhou Xuefeng, Zheng Shansuo. STUDY OF SHEAR STRENGTH OF SRHSHPC SHORT COLUMNS SUBJECTED TO CYCLIC LOADING[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(04): 135-139.
    [11]Chen Meng, Fu Ruijia, Wang Baochao, Liu Lixin. AN EXPERIMENTAL STUDY ON PRESTRESSED TRANSIMISSION LENGTH FOR PRESTRESSED HELICAL RIBBED BAR[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 39-42. doi: 10.13204/j.gyjz201307010
    [12]Dai Guoxin, Wang Fei, Shi Gang, Wang Yuanqing, Shi Yongjiu. COMPARISON OF MONOTONIC AND CYCLIC PERFORMANCES OF STRUCTURAL STEEL Q345 AND Q460[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(1): 13-17,55. doi: 10.13204/j.gyjz201201003
    [13]Su Rongzhen, Zheng Weifeng, Lu Xianlong. TEST COMPARISON OF INFLUENCE OF PRESSURE GROUTING ON UPLIFT CAPACITY OF MICROPILES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 93-96,138. doi: 10.13204/j.gyjz201101022
    [14]Shui Weihou, Liang Yonghui, Zhan Jinlin. FULL-SCALE LARGE FIELD TESTS OF PILE-RAFT IN SOFT SOIL AREA[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 88-92. doi: 10.13204/j.gyjz200904020
    [15]Chen Lun, Jiang Li, Wang Haiyan, He Dexin, Sun Junping. FIELD FULL-SCALE TEST STUDY ON TENSION BEARING MECHANISM OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(10): 33-35,46. doi: 10.13204/j.gyjz200410010
    [16]Chen Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON BEARING MECHANISM AND LOAD TRANSMISSION MODE OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 5-8. doi: 10.13204/j.gyjz200403002
  • Cited by

    Periodical cited type(1)

    1. 吴磊,黄珂,胡晨,韩承永,蔡冰冰,李春燕,徐运生. 粘土中的螺旋锚上拔承载力模拟试验及设计优化. 粘接. 2024(04): 170-173 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.4 %FULLTEXT: 11.4 %META: 88.6 %META: 88.6 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 21.9 %其他: 21.9 %北京: 1.9 %北京: 1.9 %十堰: 1.0 %十堰: 1.0 %南京: 1.0 %南京: 1.0 %合肥: 1.0 %合肥: 1.0 %天津: 1.9 %天津: 1.9 %常州: 1.0 %常州: 1.0 %常德: 2.9 %常德: 2.9 %平顶山: 1.0 %平顶山: 1.0 %广州: 1.0 %广州: 1.0 %张家口: 2.9 %张家口: 2.9 %扬州: 4.8 %扬州: 4.8 %昆明: 1.9 %昆明: 1.9 %晋城: 1.9 %晋城: 1.9 %曼谷: 1.0 %曼谷: 1.0 %洛阳: 1.0 %洛阳: 1.0 %漯河: 1.9 %漯河: 1.9 %福州: 1.9 %福州: 1.9 %芒廷维尤: 30.5 %芒廷维尤: 30.5 %芝加哥: 2.9 %芝加哥: 2.9 %衢州: 5.7 %衢州: 5.7 %运城: 3.8 %运城: 3.8 %遵义: 1.0 %遵义: 1.0 %邯郸: 1.0 %邯郸: 1.0 %郑州: 1.0 %郑州: 1.0 %铁岭: 1.0 %铁岭: 1.0 %长沙: 1.0 %长沙: 1.0 %青岛: 1.0 %青岛: 1.0 %其他北京十堰南京合肥天津常州常德平顶山广州张家口扬州昆明晋城曼谷洛阳漯河福州芒廷维尤芝加哥衢州运城遵义邯郸郑州铁岭长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (92) PDF downloads(0) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return