Citation: | ZHOU Wansen, ZHONG Jufang, ZHANG Yanhong, HU Xiao. Research on Time-Frequency Parameter Prediction Models of Ground Motion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 177-185. doi: 10.3724/j.gyjzG22110105 |
[1] |
RAGHUKANTH S, SANGEETHA S. Empirical mode decomposition of earthquake accelerograms[J]. Advances in Adaptive Data Analysis, 2012, 4(4),1250022.
|
[2] |
钟菊芳,吴海波.多断层破裂下单双峰地震动参数对比分析[J].防灾减灾工程学报,2018,38(1):193-202.
|
[3] |
SHASHI P. Ground motion simulation validation based on loss metrics[D]. Irvine: University of California, 2017.
|
[4] |
BRADLEY B A. Empirical correlations between cumulative absolute velocity and amplitude-based ground motion intensity measures[J]. Earthquake Spectra, 2012, 28(1):37-54.
|
[5] |
CABALAR A F, CEVIK A. Genetic programming-based attenuation relationship: an application of recent earthquakes in turkey[J]. Computers & Geosciences, 2009, 35(9):1884-1896.
|
[6] |
BOORE D M, ATKINSON G M. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s[J]. Earthquake Spectra, 2008, 24(1):99-138.
|
[7] |
PODILI B, RAGHUKANTH S T G. Ground motion prediction equations for higher order parameters[J]. Soil Dynamics and Earthquake Engineering-Southampton, 2019, 118:98-110.
|
[8] |
PODILI B, RAGHUKANTH S T G. Ground motion parameters for the 2011 Great Japan Tohoku earthquake[J]. Journal of Earthquake Engineering, 2019, 23(4): 688-723.
|
[9] |
VEMULA S, YELLAPRAGADA M, PODILI B, et al. Ground motion intensity measures for New Zealand[J]. Soil Dynamics and Earthquake Engineering, 2021, 150, 106928.
|
[10] |
SREEJAYA K P, BASU J, RAGHUKANTH S T G, et al. Prediction of ground motion intensity measures using an artificial neural network[J]. Pure and Applied Geophysics, 2021, 178(6): 2025-2058.
|
[11] |
王竟仪,王治国,陈宇民,等.深度人工神经网络在地震反演中的应用进展[J].地球物理学进展,2023,38(1): 298-320.
|
[12] |
周纯择,阳军生,牟友滔,等.南昌上软下硬地层中盾构施工地表沉降的BP神经网络预测方法[J].防灾减灾工程学报,2015,35(4):556-562.
|
[13] |
KHOSRAVIKIA F, ZENINALI Y, NAGY Z, et al. Neural network-based equations for predicting PGA and PGV in Texas, Oklahoma, and Kansas[M]//Geotechnical Earthquake Engineering and Soil Dynamics V. Reston. VA: American Society of Civil Engineers, 2018: 538-549.
|
[14] |
DHANYA J, RAGHUKANTH S T G. Ground motion prediction model using artificial neural network[J]. Pure and Applied Geophysics, 2018, 175(3): 1035-1064.
|
[15] |
DHANYA J, SAGAR D, RAGHUKANTH S T G. Predictive models for ground motion parameters using artificial neural network[C]//Recent Advances in Structural Engineering, Volume 2. Select Proceedings Neural Network. Springer, Singapore: 2019: 93-105.
|
[16] |
VEMULA S, YELLAPRAGADA M, PODILI B, et al. Ground motion intensity measures for New Zealand[J]. Soil Dynamics and Earthquake Engineering, 2021, 150, 106928.
|
[17] |
SREEJAYA K P, BASU J, RAGHUKANTH S T G, et al. Prediction of ground motion intensity measures using an artificial neural network[J]. Pure and Applied Geophysics, 2021, 178(6): 2025-2058.
|
[18] |
马宗晋.中美大陆东部地震构造的比较[J].中国地震,1986(4):33-41.
|
[19] |
Pacific Earthquake Engineering Research Center: NGA-West2 Database[DB/OL]. 2022-08-18. http://ngawest2.berkeley.edu/flatfile.html.
|
[20] |
HUANG N E, WU M L C, LONG S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2003, 459: 2317-2345.
|
[21] |
YEH J R, SHIEH J S, HUANG N E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156.
|
[22] |
LIANG J, CHAUDHURI S R, SHINOZUKA M. Simulation of nonstationary stochastic processes by spectral representation[J]. Journal of Engineering Mechanics, 2007, 133(6): 616-627.
|
[23] |
卢建旗. 中强地震活动区地震动衰减规律研究[D].哈尔滨:中国地震局工程力学研究所,2009.
|
[24] |
蔡荣辉,崔雨轩,薛培静.三层BP神经网络隐层节点数确定方法探究[J].电脑与信息技术,2017,25(5):29-33.
|