Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YANG Yuan, CUI Qiandao, LIAN Jijian, LIU Hongbo, ZHOU Guangen, CHEN Zhihua. LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 203-208. doi: 10.13204/j.gyjzG20092308
Citation: LIU Jian, ZHAO Yu, WANG Fei-cheng, LIU Zhang-jiang, CENG Rong-sen, ZHOU Guan-gen, QI Yu-liang, REN Da, CHEN Yuan, XIAO Hai-peng, PENG Lin-miao. Research on Neural Network Analysis Model of Bearing Capacity of Steel Tubed Steel Reinforced Concrete Cylinder[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 147-152,120. doi: 10.13204/j.gyjzg22010519

Research on Neural Network Analysis Model of Bearing Capacity of Steel Tubed Steel Reinforced Concrete Cylinder

doi: 10.13204/j.gyjzg22010519
  • Received Date: 2022-01-05
    Available Online: 2023-02-06
  • According to the existing calculation formula of the bearing capacity of steel tubed steel reinforced concrete (TSRC) columns under axial and eccentric compression, the neural network analysis model of the bearing capacity of TSRC columns under axial and eccentric compression was proposed. Ten sensitive parameters affecting the bearing capacity were selected to determine the number of nodes in the input layer, and the bearing capacity of TSRC cylinder was taken as the output layer. The number of nodes in the hidden layer was determined as 12 according to the mean square error MSE and correlation coefficient R by trial and error method, and the N10-12-1 neural network analysis model was established. The prediction results of the neural network analysis model show that the maximum error was only 6.08%, indicating that the established neural network analysis model for the bearing capacity of TSRC cylinder under axial compression and eccentric londing was a good method. Finally, sensitivity analysis based on Garson algorithm was carried out to obtain the influence degree of each input parameter on the bearing capacity of TSRC cylinder, which could be used for reference in engineering design.
  • [1]
    刘坚.钢与混凝土组合结构设计原理[M].北京:科学出版社, 2005.
    [2]
    刘坚, 田勇, 刘长江, 等.圆钢管钢筋再生混凝土短柱轴压承载力[J].建筑科学与工程学报, 2020, 37(5):97-105.
    [3]
    刘坚, 张鹏程, 江进, 等.圆钢管 H 型钢再生混凝土短柱的轴压承载力分析[J].西南交通大学学报, 2020, 55(6):1280-1286.
    [4]
    CHENG G, ZHOU X, LIU J, et al.Seismic behavior of circular tubed steel-reinforced concrete column to steel beam connections[J].Thin-Walled Structures, 2019, 138(5):485-495.
    [5]
    张鹏程.钢管(约束)H型钢再生混凝土短柱轴压力学性能研究[D].广州:广州大学, 2020.
    [6]
    YU Q, TAO Z, LIU W, et al.Analysis and calculations of steel tube confined concrete (STCC) stub columns[J].Journal of Constructional Steel Research, 2010, 66(1):53-64.
    [7]
    GEYER P, SINGARAVEL S.Component-based machine learning for performance prediction in building design[J].Applied Energy, 2018, 228:1439-1453.
    [8]
    TRUNG N T, SHAHGOLI A F, ZANDI Y, et al.Moment-rotation prediction of precast beam-to-column connections using extreme learning machine[J].Structural Engineering and Mechanics, 2019, 70(5):639-647.
    [9]
    幸坤涛, 赵国藩, 岳清瑞.高强钢管混凝土核心柱抗震性能神经网络评估[J].工业建筑, 2002, 32(10):63-65.
    [10]
    刘坚著.钢结构高等分析的二阶非弹性理论与应用[M].北京:科学出版社, 2012:255-310.
    [11]
    刘坚, 潘澎, 李东伦, 等.考虑楼板刚度贡献的梁柱节点半刚性连接弯矩-转角神经网络模型[J].建筑科学与工程学报, 2016, 33(1):99-105.
    [12]
    AHMADI M, NADERPOUR H, KHEYRODDIN A.ANN model for predicting the compressive strength of circular steel-confined concrete[J].International Journal of Civil Engineering, 2017, 15:213-221.
    [13]
    JAYALEKSHMI S, JEGADESH J S S, GOEL A.Empirical approach for determining axial strength of circular concrete filled steel tubular columns[J].Journal of The Institution of Engineers (India):Series A, 2018, 99(2):257-268.
    [14]
    NADERPOUR H, NAGAI K, FAKHARIAN P, et al.Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods[J].Composite Structures, 2019, 215(5):69-84.
    [15]
    张清允, 陈志华, 王小盾.基于神经网络的矩形钢管高强混凝土计算方法[J].石家庄铁道大学学报(自然科学版), 2018, 31(1):11-15.
    [16]
    WANG H J, ZHU H B, WEI H.Bearing capacity of concrete filled square steel tubular columns based on neural network[J].Advanced Materials Research, 2012, 502:193-197.
    [17]
    TRAN V L, THAI D K, NGUYEN D D.Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete[J].Thin-Walled Structures, 2020, 151.DOI: 10.1016/j.tws.2020.106720.
    [18]
    DU Y S, CHEN Z H, ZHANG C Q, et al.Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks[J].Frontiers of Computer Science, 2017, 5 (11):863-873.
    [19]
    王宣鼎.钢管约束型钢混凝土短柱轴压及偏压力学性能研究[D].哈尔滨:哈尔滨工业大学, 2013.
    [20]
    闫标.钢管约束型钢混凝土中长柱静力性能及设计方法研究[D].兰州:兰州大学, 2013.
    [21]
    刘连鹏.圆钢管约束型钢超高强混凝土短柱轴压受力性能研究[D].大连:大连理工大学, 2015.
    [22]
    王昕培.圆钢管约束型钢高强混凝土短柱受压力学性能研究[D].大连:大连理工大学, 2018.
    [23]
    飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:北京电子工业出版社, 2005.
    [24]
    TRASK A, HILL F, REED S, et al.Neural arithmetic logic units[C]//The Thirty-Second Annual Conference on Neural Information Processing Systems.Saarland:DBLP, 2018:8046-8055.
    [25]
    邓庆明.基于因素影响的水土流失程度敏感性研究[J].黑龙江水利科技, 2019, 47(11):157-160.
    [26]
    JULIAN D O, MICHAEL K J, RUSSELL G D.An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data[J].Ecological Modelling, 2004, 178(3/4):389-397.
    [27]
    GARSON G D.Interpreting neural-network connection weights[J].AI Expert, 1991, 6(4):46-51.
  • Relative Articles

    [1]JIN Nan, WU Yongjingbang, SHI Zhongqi, YUE Qingrui, ZHENG Zexing. Research on Methods for Detection and Localization of Color Steel Tile Buildings[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 58-64. doi: 10.3724/j.gyjzG23120810
    [2]WANG Wei, MI Qingren, XIAO Yun, YANG Xincong. Research on the Detection Method of Hollowing and Missing for Building Exterior Walls Based on Visible and Infrared Image Fusion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 51-59. doi: 10.13204/j.gyjzG22112305
    [3]ZHANG Haoyu, DING Yong, LI Denghua. A Structural Surface Crack Detection Method Based on 3D Reconstruction[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 60-67. doi: 10.13204/j.gyjzG22102611
    [4]FAN Cunjun, JIN Songyan, JIN Nan, SHI Zhongqi, WU Yongjingbang, HAO Xintian. Crack Recognition and Quantitative Analysis Based on Deep Learning[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 126-132. doi: 10.3724/j.gyjzG24061802
    [5]YANG Yinqiang, KANG Shuai, WANG Zifa, HE Zhongying, TENG Hui. Research on Damage Identification for Steel Frames Based on Convolutional Autoencoder and Correlation Function[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 78-86. doi: 10.3724/j.gyjzG23102311
    [6]FAN Lijun. Identification of Crack in Concrete Structures Based on MobileNetV2 of Lightweight Convolutional Network[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 231-236. doi: 10.13204/j.gyjzG23021618
    [7]LI Shujin, XIONG Shuqi, FAN Peiran, WANG Gang. Application Research on Deep Convolutional Neural Network Considering Residual Learning in Structural Damage Identification[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 192-198. doi: 10.13204/j.gyjzg21101009
    [8]LI Rui, ZHANG Chun. RESEARCH ON STRUCTURAL DAMAGE DETECTION METHOD BASED ON ONE-DIMENSIONAL DILATED CONVOLUTION NEURAL NETWORK[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 177-183. doi: 10.13204/j.gyjzg20103011
    [9]ZHOU Yiyi, WANG Jin, LI Jiannan, JIAN Huicheng, ZHOU Qiang, HU Jiayi. STRUCTURAL LAYOUT AND SEISMIC ANALYSIS OF THE SPHERICAL EXHIBITION CENTER IN SUZHOU HIGH SPEED RAILWAY NEW CITY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 204-212. doi: 10.13204/j.gyjzG20102206
    [10]HU Weibing, YANG Jia, WANG Long, HOU Yanfang. STUDY ON DAMAGE DETECTION AND QUANTIFICATION OF ANCIENT BUILDING TIMBER STRUCTURES BASED ON LAMINATION THEORY AND BP NEURAL NETWORKS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 71-77,111. doi: 10.13204/j.gyjzG20020501
    [11]Guo Man-liang, Huang Chao-jie, Ling Jiang, Xiao Ming. INTRODUCTION TO PROPOSALS FOR INTERNATIONAL DESIGN COMPETITION FOR SHENZHEN UNIVERSIDE SPORTS CENTRE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(10): 113-119,82. doi: 10.13204/j.gyjz201210024
    [12]Chen Zhihua, Weng Kai, Liu Hongbo, Yan Renzhang, Bu Yidu. THE RESEARCH STATUS AND ENGINEERING APPLICATION OF STAINLESS STEEL ON SPACE GRID STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 55-62,54. doi: 10.13204/j.gyjz2011205009
    [13]Wang Cheng Zhang Yigang Tan Zhengguang, . ANALYSIS OF LOADING PROCESS OF THE IRSSP AFFECTED BY WEB MEMBER[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 89-92. doi: 10.13204/j.gyjz200811022
    [14]Hong Jinxiang, Huang Wei, Miao Changwen. STUDY ON PREDICTION OF CONCRETE STRENGTH USING WAVELET NEURAL NETWORK[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 47-49. doi: 10.13204/j.gyjz200407013
  • Cited by

    Periodical cited type(3)

    1. 周建. 基于长短期记忆网络的田径运动员专项体能训练即时数据采集. 兰州文理学院学报(自然科学版). 2023(03): 107-112 .
    2. 李红民,王健,闫凯. 基于多传感器数据融合的空间结构健康状态评估方法. 建筑结构学报. 2023(S1): 364-371 .
    3. 王健,李红民,闫凯. 基于突变理论的空间钢结构稳定性研究. 山东建筑大学学报. 2023(05): 33-39 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.8 %FULLTEXT: 8.8 %META: 89.2 %META: 89.2 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.9 %其他: 5.9 %其他: 0.5 %其他: 0.5 %[]: 1.0 %[]: 1.0 %临汾: 0.5 %临汾: 0.5 %北京: 10.8 %北京: 10.8 %南京: 1.5 %南京: 1.5 %台州: 0.5 %台州: 0.5 %合肥: 2.0 %合肥: 2.0 %咸阳: 0.5 %咸阳: 0.5 %大连: 0.5 %大连: 0.5 %天津: 1.0 %天津: 1.0 %宣城: 1.0 %宣城: 1.0 %常州: 1.0 %常州: 1.0 %常德: 0.5 %常德: 0.5 %开封: 0.5 %开封: 0.5 %张家口: 2.9 %张家口: 2.9 %扬州: 0.5 %扬州: 0.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %枣庄: 0.5 %枣庄: 0.5 %济南: 1.5 %济南: 1.5 %湖州: 0.5 %湖州: 0.5 %漯河: 1.5 %漯河: 1.5 %芒廷维尤: 31.9 %芒廷维尤: 31.9 %芝加哥: 0.5 %芝加哥: 0.5 %莫斯科: 1.0 %莫斯科: 1.0 %西宁: 16.7 %西宁: 16.7 %西安: 0.5 %西安: 0.5 %贵阳: 1.5 %贵阳: 1.5 %运城: 6.9 %运城: 6.9 %邯郸: 0.5 %邯郸: 0.5 %郑州: 2.0 %郑州: 2.0 %重庆: 0.5 %重庆: 0.5 %长沙: 1.5 %长沙: 1.5 %青岛: 1.0 %青岛: 1.0 %其他其他[]临汾北京南京台州合肥咸阳大连天津宣城常州常德开封张家口扬州晋城朝阳枣庄济南湖州漯河芒廷维尤芝加哥莫斯科西宁西安贵阳运城邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (90) PDF downloads(0) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return