Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Wang Xinling, Kang Xiandong, Li Ke, Huang Weidong. FATIGUE DAMAGE MECHANISM OF HRBF500 RC BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 45-48. doi: 10.13204/j.gyjz201311011
Citation: WEI Kun-lun, LI Shuang-xi. Effect of Basalt Fiber on Impact Resistance of Rubber Concrete[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 42-47,128. doi: 10.13204/j.gyjzG22031210

Effect of Basalt Fiber on Impact Resistance of Rubber Concrete

doi: 10.13204/j.gyjzG22031210
  • Received Date: 2022-03-12
    Available Online: 2023-02-06
  • In order to study the effect of basalt fiber (BF) on the impact resistance of acicular rubber concrete, the impact resistance of acicular rubber concrete with different BF content, and lengths was analyzed through drop weight impact test, its microstructure was observed combined with scanning electron microscope (SEM) and the reinforcement mechanism was discussed. Finally, the results of impact resistance test were fitted by Weibull distribution model.The results showed that BF could improve the impact resistance of acicular rubber concrete. When the BF length was 12 mm and the content was 0.1%, the impact energy consumption of acicular rubber concrete was the largest, which was 54%. At this time, compared with ordinary concrete, the impact energy consumption of basalt fiber rubber concrete (BFRC) was increased by 516%; under the action of impact kinetic energy, acicular rubber could absorb deformation, rebound and release part of the consumed kinetic energy. BF dissipated part of the kinetic energy through adhesion and friction with the matrix for fiber drawing deformation and damage. The two materials jointly reduced the damage of impact kinetic energy to the concrete matrix and achieved the purpose of toughening and crack resistance;the impact times of BFRC could be statistically analyzed by two parameter Weibull distribution.
  • [1]
    晁夫奎, 王玉.我国废旧轮胎资源化技术应用现状及研究方向[J].再生资源与循环经济, 2021, 14(9):27-29.
    [2]
    郝贠洪, 樊磊, 韩燕, 等.冲击荷载作用下橡胶混凝土的损伤研究[J].振动与冲击, 2019, 38(17):73-80.
    [3]
    GUPTA T, SHARMA R K, CHAUDHARY S.Impact resistance of concrete containing waste rubber fiber and silica fume[J].International Journal of Impact Engineering, 2015, 83(9):76-87.
    [4]
    韩菊红, 袁群, 冯凌云, 等.橡胶混凝土的抗冲击性能研究[J].人民黄河, 2018, 40(11):107-109.
    [5]
    ABDELMONEM A, EL-FEKY M S, NASR E S A R, et al.Performance of high strength concrete containing recycled rubber[J].Construction and Building Materials, 2019, 227(10):1-10.
    [6]
    LI Y, ZHANG S, WANG R, et al.Potential use of waste tire rubber as aggregate in cement concrete:a comprehensive review[J].Construction and Building Materials, 2019, 225(11):1183-1201.
    [7]
    ISMAIL M K, HASSAN A, LACHEMI M.Effect of fiber type on impact and abrasion resistance of engineered cementitious composite[J].ACI Materials Journal, 2018, 115(6):957-968.
    [8]
    高真, 曹鹏, 孙新建, 等.玄武岩纤维混凝土抗压强度分析与微观表征[J].水力发电学报, 2018, 37(8):111-120.
    [9]
    XINZHONG WANG, JUN HE, et al.The effects of fiber length and volume on material proper-ties and crack resistance of basalt fiber reinforced concrete[J].Advances in Materials Science and Engineering, 2019, 2019(4):1-17.
    [10]
    王振山, 邢立新, 赵凯, 等.硫酸镁侵蚀环境下玄武岩纤维混凝土耐腐蚀及力学性能劣化研究[J].应用力学学报, 2020, 37(1):134-141.
    [11]
    朱涵, 刘昂, 于泳.低温下玄武岩纤维混凝土的抗冲击性能[J].材料科学与工程学报, 2018, 36(4):600-604.
    [12]
    ELIK Z, BINGL A F.Fracture properties and impact resistance of self-compacting fiber reinforced concrete (SCFRC)[J].Materials and Structures, 2020, 53(3):1-16.
    [13]
    YOUSSF O, MILLS J E, HASSANLI R.Assessment of the mechanical performance of crumb rubber concrete[J].Construction and Building Materials, 2016, 125(8):175-183.
    [14]
    胡艳丽, 高培伟, 李富荣, 等.不同取代率的橡胶混凝土力学性能试验研究[J].建筑材料学报, 2020, 23(1):85-92.
    [15]
    周浩, 贾彬, 黄辉, 等.玄武岩纤维混凝土抗压和抗折力学性能试验研究[J].工业建筑, 2019, 49(8):147-152.
    [16]
    SADRMOMTAZI A, TAHMOURESI B, SARADAR A.Effects of silica fume on mechanical strength and micros-tructure of basalt fiber reinforced cementitious composites (BFRCC)[J].Construction and Building Materials, 2018, 162(2):321-333.
    [17]
    贺东青, 王金歌, 王一鸣.橡胶掺量对CBFRC的物理力学性能影响[J].建筑材料学报, 2015, 18(5):857-860.
    [18]
    陈疏桐, 陈建东, 薛旭.玄武岩纤维橡胶混凝土力学及冻融性能试验研究[J].混凝土与水泥制品, 2020, 46(4):54-58.
    [19]
    高峰, 郝贠洪, 吴安利, 等.低模量聚酯纤维/水泥基复合材料抗冲击性能及损伤机制[J].复合材料学报, 2021, 38(11):3838-3849.
    [20]
    李冬, 丁一宁.钢筋与结构型合成纤维对混凝土抗冲击性能混杂效应的分析[J].振动与冲击, 2017, 36(2):123-128.
    [21]
    LI J J, NIU J G, WAN C J, et al.Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete[J].Construction and Building Materials, 2016, 118(8):27-35.
    [22]
    闻洋, 刘培培.橡胶混凝土抗冲击性能研究[J].硅酸盐通报, 2018, 37(3):792-799.
    [23]
    刘加平, 汤金辉, 韩方玉.现代混凝土增韧防裂原理及应用[J].土木工程学报, 2021, 54(10):47-54.
    [24]
    侯敏, 陶燕, 陶忠, 等.关于玄武岩纤维混凝土的增强机理研究[J].混凝土, 2020(2):67-71.
    [25]
    王立成, 王海涛, 刘汉勇.钢纤维轻骨料混凝土抗冲击性能试验研究与统计分析[J].大连理工大学学报, 2010, 50(4):557-563.
    [26]
    WEIBULL W.A statistical distribution function of wide applicability[J].Journal of Applied Mechanics, 1951, 18(3):293-297.
    [27]
    刘问, 徐世烺, 李庆华, 等.等幅疲劳荷载作用下超高韧性水泥基复合材料弯曲疲劳寿命试验研究[J].建筑结构学报, 2012, 33(1):119-127.
    [28]
    OH B H.Fatigue life distribution of concrete forvarious stress levels[J].ACI Materials Journal, 1991, 88(2):191-198.
    [29]
    RAHMANI T, KIANI B, SHEKARCHI M, et al.Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test[J].Construction & Building Materials, 2012, 37(7):360-369.
  • Relative Articles

    [1]ZHANG Xue, MEN Jinjie, RONG Qiang, QIAO Dehao. Research on Prediction Models of Flexural Capacity of Corroded RC Beams Based on Ensemble Learning[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 128-137. doi: 10.3724/j.gyjzG24012901
    [2]LIU Bin, YANG Jiaqi, LIU Tianqiao, HU Lili, FENG Peng. Finite Element Analysis of Reinforced Concrete Beams Strengthened with Prestressed CFRP Plates with High Ductility[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 72-80. doi: 10.3724/j.gyjzG23111328
    [3]SONG Songke, DU Taoming, YANG Tao, ZHANG Qinghua. Coupling Effect Mechanism of Pavement Characteristics on Fatigue Damage of Orthotropic Steel Decks[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 229-237. doi: 10.3724/j.gyjzG21122303
    [4]HOU Chongchi, WANG Kaixuan, ZHENG Wenzhong, LIU Yuchen, ZHANG Lijia, LI Hongbin. Seismic Performance and Cumulative Damage Analysis of Concrete Columns Confined by High-Strength Stirrups[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 133-142. doi: 10.13204/j.gyjzG22111310
    [5]ZHU Linxuan, ZHANG Mingyi, CHEN Chaoran, ZHOU Zhijun, WANG Miaomiao. Prediction of Carbonation Depth of Reinforced Concrete Beams Under Cyclic Flexural Loads[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 139-143,212. doi: 10.13204/j.gyjzG21112513
    [6]LI Bin, LUO Yanyan, LI Xingbo. Seismic Performance Test and Finite Element Analysis of Monolithic Precast Shear Wall with Partially-Connected Vertical Distributed Steel Bars[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 51-59,23. doi: 10.13204/j.gyjzG21040601
    [7]HU Wenhao, GUO Rui, REN Yu. Study on the Flexural Capacity of RC Beams Strengthened with FRP Grids Based on the Bond-Slip Cohesive Model[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 216-226. doi: 10.13204/j.gyjzG21062512
    [8]CUI Honghuan, HE Jingyun, ZHANG Zhenhuan, YANG Xingran, WANG Xiaojing. A FREEZE-THAW DAMAGE MODEL OF CEMENT-SOLIDIFIED SOIL IN SEASONAL FROZEN SOIL ZONES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 158-163. doi: 10.13204/j.gyjzG20072406
    [9]GAO Ziqi, ZHANG Jintao, ZHANG Hao, HAO Han, GUO Rui. FINITE ELEMENT ANALYSIS OF FLEXURAL BEHAVIOR OF DAMAGED RC BEAMS REINFORCED BY FRP[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 44-50,43. doi: 10.13204/j.gyjzG20110321
    [10]Zhu Chenfei, Liu Xiaojun, Li Wenzhe, Wu Yonggen, Liu Qingtao. STUDY OF FREEZE-THAW DURABILITY AND DAMAGE MODEL OFHYBRID FIBER CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 10-14. doi: 10.13204/j.gyjz201502003
    [11]Wang Zheng, Shi Qingxuan. COMPARATIVE ANANLYSIS OF SHEAR CAPACITY FOR REINFORCED CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 105-109,138. doi: 10.13204/j.gyjz201307024
    [12]Wang Yutian, Zhang Wei, Jiang Fuxiang. EXPERIMENT ON THE BENDING PERFORMANCE OF CFRP REINFORCED PRE-DAMAGED REINFORCED CONCRETE BEAM UNDER SEAWATER ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 99-103. doi: 10.13204/j.gyjz201302020
    [13]Jia Jinqing, Zhang Lihua, Meng Gang. CALCULATION METHOD FOR DAMAGE INDEX OF RC BEAM UNDER FATIGUE LOADING[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 54-58. doi: 10.13204/j.gyjz201208012
    [14]Liao Yanfen, Qi Yaqing, Ma Xiaoqian. NONLINEAR FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BEAMS IN FIRE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 31-37. doi: 10.13204/j.gyjz201107007
    [15]Wang Xinling, Chen Qingping, Du Lin. EXPERIMENTAL RESEARCH ON HRBF500 HIGH STRENGTH RC BEAMS FOR HIGH SPEED RAILWAY UNDER FATIGUE LOADING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(11): 18-21,26. doi: 10.13204/j.gyjz201011006
    [16]Jiang Chaowen, Zhang Jiwen. NON-LINEAR ANALYSIS OF CONCRETE BEAM-COLUMN ASSEMBLIES REINFORCED WITH FINE GRAINED HIGH STRENGTH STEEL BARS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 40-44. doi: 10.13204/j.gyjz200911010
    [17]Zhao Yong, Wang Xiaofeng, Su Xiaozu, Cheng Zhijun. EXPERIMENTAL RESEARCH ON THE EFFECTS OF SURFACE REINFORCEMENT ON CRACK SPACING AND WIDTH OF REINFORCED CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 29-32. doi: 10.13204/j.gyjz200911008
    [18]Hu Ling, Yang Yongxin, Wang Quanfeng, Xu Yuye, Wang Jiangen. EXPERIMENTAL STUDY ON BOND ANCHORAGE PROPERTIES OF HRBF500 STEEL BARS IN CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 13-16,44. doi: 10.13204/j.gyjz200911004
    [19]Liu Ronggui, Fu Kai, Yan Tingcheng. THE FATIGUE PROPERTIES OF PRE-STRESSED CONCRETE STRUCTURE UNDER THE CONDITIONS OF FREEZE-THAW CYCLE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 75-78. doi: 10.13204/j.gyjz200811018
    [20]Ouyang Yu, Wang Peng, Zhang Yunchao. CALCULATION AND ANALYSIS OF FLEXURAL AND SHEAR CAPACITY OF RC BEAMS STRENGTHENED WITH BFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 24-27. doi: 10.13204/j.gyjz200706007
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.9 %FULLTEXT: 6.9 %META: 88.8 %META: 88.8 %PDF: 4.4 %PDF: 4.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.3 %其他: 5.3 %China: 0.6 %China: 0.6 %Taiwan, China: 1.2 %Taiwan, China: 1.2 %[]: 1.6 %[]: 1.6 %上海: 3.4 %上海: 3.4 %东莞: 1.6 %东莞: 1.6 %佛山: 0.3 %佛山: 0.3 %保定: 0.3 %保定: 0.3 %兰州: 0.9 %兰州: 0.9 %北京: 14.7 %北京: 14.7 %南京: 3.1 %南京: 3.1 %南充: 0.3 %南充: 0.3 %南宁: 0.6 %南宁: 0.6 %南昌: 0.6 %南昌: 0.6 %南通: 0.3 %南通: 0.3 %厦门: 0.6 %厦门: 0.6 %台州: 0.3 %台州: 0.3 %合肥: 3.1 %合肥: 3.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %墨尔本: 0.3 %墨尔本: 0.3 %大连: 1.9 %大连: 1.9 %天津: 1.6 %天津: 1.6 %太原: 0.3 %太原: 0.3 %宁波: 0.6 %宁波: 0.6 %宜昌: 0.3 %宜昌: 0.3 %广州: 2.5 %广州: 2.5 %廊坊: 0.3 %廊坊: 0.3 %延安: 0.3 %延安: 0.3 %张家口: 1.9 %张家口: 1.9 %成都: 1.2 %成都: 1.2 %昆明: 0.3 %昆明: 0.3 %朝阳: 0.6 %朝阳: 0.6 %杭州: 3.4 %杭州: 3.4 %武汉: 3.4 %武汉: 3.4 %江门: 0.3 %江门: 0.3 %沈阳: 1.2 %沈阳: 1.2 %洛阳: 0.6 %洛阳: 0.6 %济南: 0.3 %济南: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.9 %温州: 0.9 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.3 %潍坊: 0.3 %焦作: 0.3 %焦作: 0.3 %石家庄: 1.6 %石家庄: 1.6 %福州: 1.6 %福州: 1.6 %绵阳: 0.6 %绵阳: 0.6 %芒廷维尤: 11.6 %芒廷维尤: 11.6 %芝加哥: 2.5 %芝加哥: 2.5 %苏州: 0.3 %苏州: 0.3 %英国: 0.6 %英国: 0.6 %蚌埠: 0.3 %蚌埠: 0.3 %衡水: 0.9 %衡水: 0.9 %西宁: 2.2 %西宁: 2.2 %西安: 2.5 %西安: 2.5 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 1.2 %贵阳: 1.2 %运城: 3.7 %运城: 3.7 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.6 %郑州: 1.6 %重庆: 1.6 %重庆: 1.6 %铁岭: 0.3 %铁岭: 0.3 %长沙: 0.9 %长沙: 0.9 %雅安: 0.9 %雅安: 0.9 %青岛: 0.3 %青岛: 0.3 %首尔: 0.6 %首尔: 0.6 %其他ChinaTaiwan, China[]上海东莞佛山保定兰州北京南京南充南宁南昌南通厦门台州合肥哈尔滨嘉兴墨尔本大连天津太原宁波宜昌广州廊坊延安张家口成都昆明朝阳杭州武汉江门沈阳洛阳济南深圳温州漯河潍坊焦作石家庄福州绵阳芒廷维尤芝加哥苏州英国蚌埠衡水西宁西安诺沃克贵阳运城邯郸郑州重庆铁岭长沙雅安青岛首尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (121) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return