Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 52 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
LONG Yifei, PAN Chan, GUO Xiaoqin, LI Yangwei. Experimental Research on Dynamic Mechanical Properties of Rubber Concrete Subjected to Freeze-Thaw Cycles[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 163-170,139. doi: 10.13204/j.gyjzG21091202
Citation: LONG Yifei, PAN Chan, GUO Xiaoqin, LI Yangwei. Experimental Research on Dynamic Mechanical Properties of Rubber Concrete Subjected to Freeze-Thaw Cycles[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 163-170,139. doi: 10.13204/j.gyjzG21091202

Experimental Research on Dynamic Mechanical Properties of Rubber Concrete Subjected to Freeze-Thaw Cycles

doi: 10.13204/j.gyjzG21091202
  • Received Date: 2021-09-12
    Available Online: 2022-07-25
  • In order to study the dynamic mechanical properties of rubber concrete under freeze-thaw cycles, the longitudinal wave velocity of rubber concrete specimens with 10% rubber volume was measured by non-metallic ultrasonic detector, the impact compression tests of rubber concrete specimens with different freeze-thaw cycles (0, 25, 50, 75, 100, 125) were carried out by using the 74 mm diameter variable cross-section split Hopkinson compression bar test device under different impact air pressures (0.3, 0.4, 0.5, 0.6 MPa), and the change laws of stress-strain curve, peak stress, ultimate strain dynamic intensity enhancement factor (DIF) and energy absorption effect were analyzed. The results showed that the strength of concrete decreased with the addition of rubber, but its toughness and energy absorption effect increased obviously. With the increase of freeze-thaw cycles, the longitudinal wave velocity of rubber concrete decreased and the damage degree increased. Freeze-thaw action would damage rubber concrete and reduce the longitudinal wave velocity of specimens. Under the same freeze-thaw cycles, with the increase of strain rate, the peak stress, limit strain, DIF and absorbed energy of specimen increased, and there was an obvious strain rate effect. Under the pressure of 0.6 MPa, the peak stresses of 25, 50, 75, 100 and 125 freeze-thaw cycles were reduced by 25.1%, 37.1%, 46%, 52.5% and 54.8%, respectively. With the increase of the number of freeze-thaw cycles, the peak stress of specimens decreased and the decreasing amplitude decreased gradually. After the number of cycles exceeded 100, the decreasing amplitude of stress of specimens was no longer obvious. The ultimate strain increased and the absorbed energy decreased. The freeze-thaw environment significantly reduced the strength and integrity of rubber concrete materials.
  • loading
  • [1]
    马符讯,刘彦.中国汽车工业70年的成就、经验与未来展望[J].理论探索,2019(6):108-113.
    [2]
    佚名.废旧橡胶再利用四大优势[J].中国资源综合利用,2011,29(2):1.
    [3]
    葛瀚文,董慧欣,苏冠蓉,等.废旧轮胎热裂解残渣资源化利用工艺研究进展[J].再生资源与循环经济,2019,12(10):24-27.
    [4]
    刘春生.橡胶集料混凝土的耐久性能及在桥面铺装上的应用研究[D].天津:天津大学,2010.
    [5]
    胡艳丽,高培伟,李富荣,等.不同取代率的橡胶混凝土力学性能试验研究[J].建筑材料学报,2020,23(1):85-92.
    [6]
    KI S S,IMAN H,KYPROS P.Strength and deformability of waste tyre rubber-filledreinforced concrete columns[J].Construction and Building Materials,2010,25(1):218-226.
    [7]
    赵荣生.冲击荷载作用下橡胶混凝土的力学性能试验研究[J].新型建筑材料,2021,48(5):65-70.
    [8]
    白子龙,王伯昕,林建宏.冻融循环作用对玄武岩纤维编织网与混凝土粘结性能的影响[J].新型建筑材料,2021,48(9):36-40.
    [9]
    田威,邢凯,谢永利.冻融环境下混凝土损伤劣化机制的力学试验研究[J].实验力学,2015,30(3):299-304.
    [10]
    操佩,彭刚,柳琪,等.冻融劣化混凝土的单轴动态力学特性研究[J].水利水电技术,2016,47(12):105-110.
    [11]
    周涛,熊小斌,李岩.冻融循环对钢纤维混凝土动力性能的影响研究[J].水资源与水工程学报,2021,32(3):167-172

    ,178.
    [12]
    王晨霞,张铎,曹芙波,等.冻融循环后再生混凝土的力学性能及损伤模型研究[J/OL].工业建筑:1-16[2021-09-01

    ].http://kns.cnki.net/kcms/detail/11.2068.TU.20210629.1707.002.html.
    [13]
    范梦婷,王轩.冻融循环对橡胶混凝土的耐久性的影响[J].湖北工业大学学报,2016,31(4):101-104.
    [14]
    仵鹏涛,刘中宪,吴成清,等.钢纤维对超高性能混凝土动态压缩特性的影响[J].天津大学学报(自然科学与工程技术版),2017,50(9):939-945.
    [15]
    于群,王景,叶文超.废旧橡胶混凝土抗碳化性能的试验研究[J].沈阳大学学报(自然科学版),2015,27(1):60-63.
    [16]
    齐臻,刘保华,易恋,等.冲击荷载下油菜秸秆灰分混凝土的动态力学性质[J].湖南农业大学学报(自然科学版),2017,43(3):336-339.
    [17]
    李夕兵.岩石动力学基础与应用[M].北京:科学出版社,2014.
    [18]
    宋力,胡时胜.SHPB数据处理中的二波法与三波法[J].爆炸与冲击,2005(4):368-373.
    [19]
    张蓉蓉,经来旺.SHPB试验中高低温作用后深部砂岩破碎程度与能量耗散关系分析[J].煤炭学报,2018,43(7):1884-1892.
    [20]
    张华,郜余伟,李飞,等.高应变率下聚丙烯纤维混凝土动态力学性能和本构模型[J].中南大学学报(自然科学版),2013,44(8):3464-3473.
    [21]
    胡宏彪.超声波法检测混凝土缺陷的实验分析[J].江苏建筑职业技术学院学报,2015,15(2):17-20.
    [22]
    姚韦靖,刘雨姗,王婷雅,等.橡胶/混凝土盐冻循环后性能劣化及微观结构[J/OL].复合材料学报:1-12[2021-12-11

    ].https://doi.org/10.13801/j.cnki.fhclxb.20210202.005.
    [23]
    皇民,段敬民,张佳祥,等.冻融循环下BFRC断裂损伤与软化本构曲线分析[J/OL].工业建筑:1-12[2021-09-01

    ].http://kns.cnki.net/kcms/detail/11.2068.TU.20210707.1123.007.html.
    [24]
    宁作君.冻融作用下混凝土的损伤与断裂研究[D].哈尔滨:哈尔滨工业大学,2009.
    [25]
    韩菊红,袁群,冯凌云,等.橡胶混凝土的抗冲击性能研究[J].人民黄河,2018,40(11):107-109

    ,114.
    [26]
    李晓琴,陈保淇,杜茜,等.高应变率下混凝土材料的力学行为[J].云南大学学报(自然科学版),2016,38(5):773-783.
    [27]
    周继凯,王石付,钱萍萍,等.混凝土动态强度提高因子模型的比较与构建[J].混凝土,2014(11):5-10.
    [28]
    仰涛,王宝珍,罗皓鹏.黄麻纤维混凝土的动态压缩力学性能研究[J].合肥工业大学学报(自然科学版),2020,43(8):1109-1114.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (121) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return