Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
BAI Yifei, LIU Jiaping, ZHANG Weirong, YU Yang. LOW-CARBON TECHNIQUE METHODS FOR URBAN BLOCK BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(7): 166-174. doi: 10.13204/j.gyjzG19121107
Citation: BAI Yifei, LIU Jiaping, ZHANG Weirong, YU Yang. LOW-CARBON TECHNIQUE METHODS FOR URBAN BLOCK BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(7): 166-174. doi: 10.13204/j.gyjzG19121107

LOW-CARBON TECHNIQUE METHODS FOR URBAN BLOCK BUILDINGS

doi: 10.13204/j.gyjzG19121107
  • Received Date: 2019-10-20
  • Publish Date: 2020-10-17
  • China's rapid urbanization has led to a significant increase in greenhouse gas emission, putting enormous pressure on the environment. Cities are major places of human activity and major sources of greenhouse gases. Many researchers have carried out a lot of research from macro urban scales and micro architectural scales, such as the low-carbon city and low-carbon architecture, etc. While for the medium level of low-carbon urban planning, that is, urban block scales, the relevant research is less and more scattered. However, urban blocks are the most basic spatial units to achieve low-carbon city goals. Low-carbon planning at this level is considered to be one of the most effective and flexible means, so it is very important. This paper took urban block building groups as the object, systematically summarized it by bottom-up method, and focused on summarizing and sorting out three kinds of technical methods for building low-carbon urban block buildings, that was low-carbon measures for single buildings, the impact of block spatial forms and block carbon sinks on building carbon emission, and how to affect carbon emission of block buildings. Finally, an effective method was provided to low-carbon urban planning design and relevant research.
  • 肖华斌, 盛硕, 刘嘉. 低碳生态城市空间规划途径研究综述与展望[J]. 城市发展研究, 2015, 22(12):8-12.
    FONG W K,MATSUMOTO H,HO C S,et al. Energy Consumption and Carbon Dioxide Emission Considerations in the Urban Planning Process in Malaysia[J].Journal of the Malaysian Institute of Planners,2008(6):101-130.
    刘志林, 秦波. 城市形态与低碳城市:研究进展与规划策略[J]. 国际城市规划, 2013, 28(2):4-11.
    秦波,邵然.低碳城市与空间结构优化:理念、实证和实践[J].国际城市规划,2011,26(3):73-78.
    GLAESER E L, KAHN M E. The Greenness of Cities:Carbon Dioxide Emissions and Urban Development[J]. Journal of Urban Economics,2009,67(3):404-418.
    AUFFHAMMER M, CARSON R T. Forecasting the Path of China's CO2 Emissions Using Province-Level Information[J]. Journal of Environmental Economics and Management,2007,55(3):229-247.
    张希晨. 低碳概念下的建筑设计应对策略[J]. 城市发展研究, 2010(7):51-57.
    郝靖欣,张希晨. 持续发展与绿色建筑[J]. 时代建筑,1999(4):37-39.
    吴恩融, 穆钧. 基于传统建筑技术的生态建筑实践:毛寺生态实验小学与无止桥[J].时代建筑,2007(4):50-57.
    张希晨,郝靖欣.从无锡工业遗产再利用看城市文化的复兴[J].工业建筑,2010,40(1):31-34

    ,20.
    汪芳. 张通. 清华大学环境能源楼:中意合作的生态示范性建筑[J]. 建筑学报,2008(2):34-39.
    江亿.中国建筑能耗现状及节能途径分析[J].新建筑,2008(2):4-7.
    夏冰, 张焕. 低碳城市街区形态导控方法研究综述[J]. 华中建筑, 2018, 36(9):12-15.
    叶祖达. 绿色生态城区控制性详细规划决策工具碳排放评估模型[J]. 城市发展研究, 2016(3):76-86.
    石铁矛, 王大嵩, 李绥. 低碳可持续性评价:从单体建筑到街区尺度:德国DGNB-NS新建城市街区评价体系对我国的启示[J]. 沈阳建筑大学学报(社会科学版), 2015(3):217-224.
    李兵. 低碳建筑技术体系与碳排放测算方法研究[D]. 武汉:华中科技大学, 2012.
    EUROPEAN COMMISSION.Eurostat[EB/OL].[2019-10-20].http://epp.eurostat.ec.europa.eu
    中国建筑节能协会能耗统计专业委员会.中国建筑能耗研究报告(2018)[EB/OL].(2018-12-29)[2019-10-20].http://jzjnnewht.kechuangfu.cn/upload/file/20181229/1546072726524234.pdf.
    中国建筑节能协会能耗统计专业委员会.中国建筑能耗研究报告(2019)[EB/OL].(2020-04-10)[2019-10-20].http://www.cabee.org/site/content/23565.html.
    OMRANY H, GHAFFARIANHOSEINI A. Application of Passive Wall Systems for Improving the Energy Efficiency in Buildings:A Comprehensive Review[J]. Renewable & Sustainable Energy Reviews, 2016, 62:1252-1269.
    ZHANG Y R, WANG Y F. Building Energy Saving Technologies in China:An Overview[J]. Applied Mechanics and Materials, 2012(209/210/211):1809-1813.
    梁德婧,曹海霞.浅谈地源热泵技术及其应用[J].物理教师,2019,40(9):78-80.
    《地质装备》编辑部.《中国地热能发展报告(2018)》白皮书发布[J].地质装备,2019,20(2):3-6.
    龙惟定.我国大型公共建筑能源管理的现状与前景[J].暖通空调,2007(4):19-23.
    晁军, 马子茹. 低碳导向下的街区空间形态设计研究[J]. 山西建筑, 2019(7):5-7.
    黄媛. 夏热冬冷地区基于节能的气候适应性街区城市设计方法论研究[D]. 武汉:华中科技大学, 2010.
    王振. 夏热冬冷地区基于城市微气候的街区层峡气候适应性设计策略研究[D]. 武汉:华中科技大学, 2008.
    LI Z, QUAN S J, YANG P J. Energy Performance Simulation for Planning a Low Carbon Neighborhood Urban District:A Case Study in the City of Macau[J]. Habitat International, 2016, 53:206-214.
    ISHII S, TABUSHI S, ARAMAKI T, et al. Impact of Future Urban Form on the Potential to Reduce Greenhouse Gas Emissions From Residential, Commercial and Public Buildings in Utsunomiya, Japan[J]. Energy Policy, 2010, 38(9):4888-4896.
    KAVGIC M, MAVROGIANNI A, MUMOVIC D, et al. A Review of Bottomup Building Stock Models for Energy Consumption in the Residential Sector[J]. Building & Environment, 2010, 45(7):1683-1697.
    PISELLO A L, TAYLOR J E, XU X, et al. Inter-Building Effect:Simulating the Impact of a Network of Buildings on the Accuracy of Building Energy Performance Predictions[J]. Building & Environment, 2012, 58:37-45.
    QUAN S J, ECONOMOU A, GRASL T, et al. Computing Energy Performance of Building Density, Shape and Typology in Urban Context[J]. Energy Procedia, 2014, 61:1602-1605.
    SHIMODA Y, FUJII T, MORIKAWA T, et al. Residential End-Use Energy Simulation at City Scale[J]. Building and Environment, 2004, 39(8):959-967.
    STR Mann-Andersen J, SATTRUP P A. The Urban Canyon and Building Energy Use:Urban Density Versus Daylight and Passive Solar Gains[J]. Energy & Buildings, 2011, 43(8):2011-2020.
    STEEMERS K. Energy and the City:Density, Buildings and Transport[J]. Energy and Buildings, 2003, 35(1):3-14.
    GEORGAKIS C, SANTAMOURIS M. Experimental Investigation of Air Flow and Temperature Distribution in Deep Urban Canyons for Natural Ventilation Purposes[J]. Energy & Buildings, 2006, 38(4):367-376.
    LITTLEFAIR P. Daylight, Sunlight and Solar Gain in the Urban Environment[J]. Solar Energy, 2001, 70(3):177-185.
    OKE T R. Street Design and Urban Canopy Layer Climate[J]. Energy & Buildings, 1988, 11(1/2/3):103-113.
    OKEIL A. A Holistic Approach to Energy Efficient Building Forms[J]. Energy and Buildings, 2010, 42(9):1437-1444.
    VICTOR O. Design with Climate:Bioclimatic Approach to Architectural Regionalism[M]. Princeton:Princeton University Press, 1963.
    COMPAGNON R. Solar and Daylight Availability in the Urban Fabric[J]. Energy and Buildings, 2004, 36(4):321-328.
    TAKEBAYASHI H, MORIYAMA M. Surface Heat Budget on Green Roof and High Reflection Roof for Mitigation of Urban Heat Island[J]. Building and Environment, 2007, 42(8):2971-2979.
    NIACHOU A, PAPAKONSTANTINOU K, SANTAMOURIS M, et al. Analysis of the Green Roof Thermal Properties and Investigation of its Energy Performance[J]. Energy & Buildings, 2001, 33(7):719-729.
    黄雄. 低碳城市街区空间形态的模式及管控研究[C]//2016中国城市规划年会论文集. 2016.
    陈飞.建筑与气候:夏热冬冷地区建筑风环境研究[D].上海:同济大学, 2008.
    付衡,龚延风,许锦峰,等.夏热冬冷地区居住建筑体形系数对建筑能耗影响的分析[J].新型建筑材料,2010,37(1):44-47

    ,50.
    兰兵,黄凌江.对建筑物体形系数与节能关系的质疑[J].建筑节能,2013,41(5):65-70.
    王振. 微气候视角下的城市街区环境定量分析技术[C]//第六届国际绿色建筑与建筑节能大会论文集.北京:中国城市科学研究会,2010:125-129.
    NUNEZ M, OKE T R. The Energy Balance of an Urban Canyon[J]. Journal of Applied Meteorology, 1977, 16(1):11-19.
    郭红雨, 金琪, 朱志军. 低碳导向的城市空间布局规划技术探索[J]. 南方建筑, 2014(6):95-99.
    FRANK L D, GREENWALD M J, WINKELMAN S, et al. Carbonless Footprints:Promoting Health and Climate Stabilization Through Active Transportation[J]. Preventive Medicine, 2010, 50(S):99-105.
    樊登星,余新晓,岳永杰,等.北京市森林碳储量及其动态变化[J].北京林业大学学报,2008,30(增刊2):117-120.
    TOWNSEND-SMALL A, CZIMCZIK C I. Carbon Sequestration and Greenhouse Gas Emissions in Urban Turf[J]. Geophysical Research Letters, 2010, 37(2):1-5.
    POUYAT R V, YESILONIS I D, GOLUBIEWSKI N E. A Comparison of Soil Organic Carbon Stocks Between Residential Turf Grass and Native Soil[J]. Urban Ecosystems, 2009, 12(1):45-62.
    JO H K, MCPHERSON G E. Carbon Storage and Flux in Urban Residential Greenspace[J]. Journal of Environmental Management, 1995, 45(2):109-133.
    VELASCO E, ROTH M, TAN S H, et al. The Role of Vegetation in the CO2 Flux from a Tropical Urban Neighbourhood[J]. Atmospheric Chemistry & Physics Discussions, 2013, 13(20):7267-7310.
    MEIER A, FRIESEN J. Strategic-planting[J]. Energy Auditor and Retrofitter, 1987, 4:7-12.
    PANDIT R, LABAND D N. Energy Savings from Tree Shade[J]. Ecological Economics, 2010, 69(6):1324-1329.
    AKBARI H. Shade Trees Reduce Building Energy Use and CO2 Emissions from Power Plants. Envir Pollution 116:S119-S126[J]. Environmental Pollution, 2002, 116(2):119-126.
    AKBARI H, TAHA H. The Impact of Trees and White Surfaces on Residential Heating and Cooling Energy Use in Four Canadian Cities[J]. Energy, 1992, 17(2):141-149.
    ROSENFELD A H, AKBARI H,JOSEPH J R, et al. Cool Communities:Strategies for Heat Island Mitigation and Smog Reduction[J]. Energy & Buildings,1998,28(1):51-62.
  • Relative Articles

    [1]SONG Tianshuai, YU Caizhao, QIN Yanlong, SHI Guoliang, LIU Zhansheng, ZHOU Enkai. An Intelligent Optimization Method for Large Underground Space Construction Scheme Under Low Carbon Target[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 25-32. doi: 10.3724/j.gyjzG23111317
    [2]SHAO Shuai, YU Pengzheng. Continuation of Plot Texture and Utilization of Public Space in Community Regeneration of Urban Historic Conservation Neighborhoods:Comparisons of Yanaka in Tokyo and Wudaoying in Beijing[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 95-104. doi: 10.3724/j.gyjzG22101505
    [3]GU Kangkang, ZHAO Xiaohong, CUI Yule, DONG Dong, ZHANG Xinmu. Research on Evaluation of Ventilation Efficiency and Spatial Optimization in Urban Neighborhoods[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 106-116. doi: 10.3724/j.gyjzG23063009
    [4]GUO Yang, HU Xijun. Layout Optimization of Walkways in Mixed Urban Residential and Industrial Land-Use Block[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 66-74. doi: 10.13204/j.gyjzG21061804
    [5]CHEN Xi, LENG Hong, MA Yanhong. Scale Identification and Mechanism Analysis of Harbin Urban Block Morphology Affecting Building Energy Consumption in Severe Cold Regions[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 91-99. doi: 10.13204/j.gyjzG22040221
    [6]ZHANG Hua, CHEN Bing, ZHANG Hua, XIONG Minghui. Exploration and Practice of Outdoor Wind Environment Optimization Design for Large-Scale Industrial Building Clusters[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 92-97,157. doi: 10.13204/j.gyjzG20090801
    [7]ZHANG Yanqing, SHEN Ying, LI Miaozhuang, LIU Jiaping. Evaluation of Static Traffic Spatial Characteristics of Old Communities from the Perspective of Block Integration[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 55-61. doi: 10.13204/j.gyjzG22031503
    [8]ZHANG He, CHEN Sijia, WANG Rui, ZHANG Jianxun, PENG Jingyi. Construction of Evaluation Index System for Level of Green and Low-Carbon Construction in Country Towns at the Block Scale: Taking the South Bank of Pihe River in Jintang Country of Chengdu as an Example[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 32-39. doi: 10.13204/j.gyjzg21091408
    [9]ZHANG Xiaoping. THE APPLICATION OF CARBON BALANCE ZONING METHOD IN LOW CARBON SPATIAL PLAN OF HUANTAI COUNTY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 12-19. doi: 10.13204/j.gyjzG20010703
    [10]LIANG Rui, LIANG Zhicheng, JINAG Haiyan, QIU Yunye. RESEARCH ON PUBLICNESS EVALUATION OF BUILDING ATTACHED OPEN SPACES IN HIGH-DENSITY BLOCKES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 39-44. doi: 10.13204/j.gyjzG21022002
    [11]ZHANG Xinran. DESIGN STRATEGIES OF SUPER-HIGH-RISE BUILDING COMPLEXES INTEGRATED WITH HIGH-DENSITY BLOCKS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 39-42,48. doi: 10.13204/j.gyjzG20051704
    [12]ZHOU Xiang, LIANG Shuxian. THE CREATION OF LINGNAN SHANSHUI URBAN SPACE BASED ON SMALL BLOCK IDEA[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(2): 76-81. doi: 10.13204/j.gyjz202002011
    [15]Jiang Xiujuan, Liu Jipeng. THE EXPLORATION OF LOW CARBON PLANNING AND DESIGN OF A NEW TOWN[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(7): 175-178. doi: 10.13204/j.gyjz201207031
    [16]Zhang Hualing, Zhou Tiantian. SIMULATION RESEARCH ON NATURAL VENTILATION IN THE LOW-CARBON ARCHITECTURE DESIGN PHASE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(2): 1-4. doi: 10.13204/j.gyjz201202001
    [17]Cao Hong. ANALYSIS OF ZERO CARBON BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(3): 1-3. doi: 10.13204/j.gyjz201003001
    [18]Xia Jian, Wang Yong. RESEARCH ON THE DESIGN STRATEGY OF RE-CONSTRUCTED BUILDING IN THE HISTORIC BLOCKS[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 33-38. doi: 10.13204/j.gyjz201004008
    [19]Zhu Wei-zhen. DESIGN OF BUILDING GROUP FOR HONGTA CULTURAL AND SPORTS CENTER IN YUXI[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 4-5. doi: 10.13204/j.gyjz200610002
  • Cited by

    Periodical cited type(13)

    1. 邱瑶,罗涛,张雪葳,黄丽坤. 土地开发强度与住宅能耗关联性的连续尺度研究——以浙江长兴县为例. 住区. 2024(02): 78-84 .
    2. 刘鑫兴,欧阳巧俐. 严寒地区城市街区形态对建筑减碳的影响及策略研究. 智能建筑与智慧城市. 2024(09): 141-143 .
    3. 马越洋,汪小林,杨喻声. 高密度街区建造阶段碳排放计算及评估方法研究. 建筑施工. 2024(10): 1724-1727 .
    4. 王伟. 城市建筑能耗模型及设计应用研究. 世界建筑. 2024(11): 22-23 .
    5. 张舒怡. 基于CiteSpace的城市街区研究热点主题及趋势分析. 未来城市设计与运营. 2023(05): 40-43 .
    6. 张力芳,王万江. 碳中和背景下严寒地区低碳住宅建筑设计策略研究——以新疆乌鲁木齐市为例. 城市建筑. 2022(04): 10-12 .
    7. 范小利,罗涛,张雪葳,吴良龙. 县域城镇空间形态与居住建筑能耗关联性的连续尺度研究——以浙江长兴、福建连江为例. 生态学报. 2022(08): 3155-3166 .
    8. 苟文雅,赵敬源,马西娜. 基于碳污协同影响的西安市宅旁绿地优化设计研究. 西安建筑科技大学学报(自然科学版). 2022(03): 450-458 .
    9. 刘楚月. 城市与商业空间照明领域落实绿色照明理念的意义与路径. 光源与照明. 2022(S1): 54-55+90 .
    10. 孙娟. 城市街区减碳规划方法集成体系. 城市规划学刊. 2022(06): 102-109 .
    11. 吴浩,林辰辉,陈阳,翁婷婷. 基于全过程管控的城市街区减碳技术框架与实施策略——以上海市数字江海产业园为例. 城市规划学刊. 2022(S2): 59-65 .
    12. 冷红,刘畅,于婷婷,袁青. 小城镇中心商业区典型形态能耗模拟研究. 建筑科学. 2021(06): 10-19+27 .
    13. 周峰. 基于低碳理念的城市住区公共空间设计. 辽东学院学报(自然科学版). 2021(03): 173-179 .

    Other cited types(12)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (187) PDF downloads(9) Cited by(25)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return