Tian E, Li Yi. THE DIGITAL SIMULATION OF STEEL TRUSS STRUCTURE LOW-POSITION LIFTING[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 128-131.
Citation:
Tian E, Li Yi. THE DIGITAL SIMULATION OF STEEL TRUSS STRUCTURE LOW-POSITION LIFTING[J]. INDUSTRIAL CONSTRUCTION , 2014, 44(07): 128-131.
Tian E, Li Yi. THE DIGITAL SIMULATION OF STEEL TRUSS STRUCTURE LOW-POSITION LIFTING[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 128-131.
Citation:
Tian E, Li Yi. THE DIGITAL SIMULATION OF STEEL TRUSS STRUCTURE LOW-POSITION LIFTING[J]. INDUSTRIAL CONSTRUCTION , 2014, 44(07): 128-131.
THE DIGITAL SIMULATION OF STEEL TRUSS STRUCTURE LOW-POSITION LIFTING
Abstract
Low-position lifting refers to that the design height of the lifting platform is low,and structure installation
height is above the lifting platform,in the process of lifting,structure needs to be out of the lifting platform. Notable
features of the low lifting is the lifting platform lower than the structure position,the first lifting,truss structure only
installed the part above the middle chord,hence the stiffness of the structure can not meet the design requirements.
Therefore,two hoisting points should be set in the truss structure region to ensure truss structure stability in the whole
lifting process. After the lower chord installation completed,the temporary hoisting points should be removed,and
replacing the lifting equipment to the second other lifting point,at the same time,low hoisting points within the truss
area would be set from the original string position to the bottom,hanging point displacement has become the focus of
the second lifting. With the actual situation of the lifting,MIDAS software was used to conduct two lifting digital
analysis,the structure offset in the whole lifting process was got,and through pre adjusting the steel net set up value,
with which two low-position liftings of steel truss structure were realized smoothly.
References
Relative Articles
[1] SONG Tianshuai, YU Caizhao, QIN Yanlong, SHI Guoliang, LIU Zhansheng, ZHOU Enkai. An Intelligent Optimization Method for Large Underground Space Construction Scheme Under Low Carbon Target [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 25-32. doi: 10.3724/j.gyjzG23111317
[2] LI Hao, WANG Dayang, ZHAO Dongzhuo, XIE Zhen. Shaking Table Tests and Numerical Simulation Study on the Centroid Eccentricity of the Center of Mass of Full-Frame-Supported High-Rise Building Structure with Thick Plate Transfer [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 141-149. doi: 10.3724/j.gyjzG23032007
[3] WANG Libo, LIN Zhongcai, HAN Jinwen. Research on Intelligent Demolition Method Based on BIM and 3D Scanning [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 12-21. doi: 10.13204/j.gyjzG22012601
[4] WU Mai, MA Shiqi, ZHAO Xin. Research on Performance-Based Shock-Absorbing Reinforcement of a High-Rise SRC Frame Structure [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 68-74. doi: 10.13204/j.gyjzG20102914
[5] JIN Qinming, CHENG Guozhong, LI Dongsheng, WANG Cong, CHEN Shasha, WANG Ruirong, BI Jinggang. Intelligent Deformation Monitoring for Lifting Space Frames Based on Point Cloud Data [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 209-215. doi: 10.13204/j.gyjzG21061811
[6] ZHOU Binke, CHENG Guozhong, TENG Wenzheng, ZHOU Handong, WANG Cong, CHEN Shasha, LIU Shuo, WANG Ruirong. Intelligent Optimization Method for Scan Planning of Large and Complex Space Frames [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 202-208. doi: 10.13204/j.gyjzG21062919
[7] WU Dongyue, SHEN Mengying. EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF RC SUPERPOSED COUPLING BEAMS IN PREFABRICATED SHEAR WALL SUB-STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 30-34,90. doi: 10.13204/j.gyjzG201905170006
[9] Meng Xian-de, Long Ping, Zhang Xin, Hu Xin-wei, Zhao Xu-qian. RESEARCH ON BRACE-FRAME JOINTS OF HIGH-RISE STEEL STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(10): 137-141. doi: 10.13204/j.gyjz201210028
[10] Zhang Shuyun, Bai Guoliang, Tang Liyun. RESEARCH ON DYNAMIC PERFORMANCE OF CORE-RC AND COMPOSITE FRAME STRUCTURES IN HIGH-RISE BUILDINGS [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(9): 62-66. doi: 10.13204/j.gyjz200909012
[11] Sun Xinpeng, Li Yijin, Liao Hong, Zi Wei, Wu Canliang. INTELLIGENCE DETECTION AND CONTROL TECHNIQUE OF PRESTRESSED CONCRETE AND ENGINEERING APPLICATION [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(9): 103-106. doi: 10.13204/j.gyjz200909022
[12] Chu Liu-sheng, Bai Guo-liang, Bai Xiao-hong. RESPONSE SPECTRUM ANALYSIS DESIGNMETHOD BASED ON STIFFNESS DEGRADATION FOR FRAME- CORE WALL STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(12): 61-66. doi: 10.13204/j.gyjz200712015
[13] Lei Qingguan, Wang Jianguo, Shen Xiaopu. DYNAMIC RESPONSES OF PLATES ON ELASTIC FOUNDATION BY MULTIVARIABLE SPLINE STATE SPACE PRECISION METHOD [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(1): 62-65,22. doi: 10.13204/j.gyjz200701016
[14] Ding Yongchun, Qian Yulin, Jiang Jing. STUDY ON COMPOUND CONTROL METHOD OF EARTHQUAKE-RESISTANCE TEST OF STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(10): 6-9,23. doi: 10.13204/j.gyjz200410002
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 2 4 6 8 10
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 15.9 % FULLTEXT : 15.9 % META : 84.1 % META : 84.1 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 11.6 % 其他 : 11.6 % 上海 : 1.4 % 上海 : 1.4 % 北京 : 14.5 % 北京 : 14.5 % 台州 : 1.4 % 台州 : 1.4 % 天津 : 1.4 % 天津 : 1.4 % 宜春 : 4.3 % 宜春 : 4.3 % 张家口 : 5.8 % 张家口 : 5.8 % 德阳 : 4.3 % 德阳 : 4.3 % 成都 : 1.4 % 成都 : 1.4 % 扬州 : 2.9 % 扬州 : 2.9 % 格兰特县 : 1.4 % 格兰特县 : 1.4 % 武汉 : 5.8 % 武汉 : 5.8 % 温州 : 1.4 % 温州 : 1.4 % 石家庄 : 1.4 % 石家庄 : 1.4 % 芒廷维尤 : 31.9 % 芒廷维尤 : 31.9 % 芝加哥 : 2.9 % 芝加哥 : 2.9 % 衢州 : 1.4 % 衢州 : 1.4 % 西宁 : 2.9 % 西宁 : 2.9 % 郑州 : 1.4 % 郑州 : 1.4 % 其他 上海 北京 台州 天津 宜春 张家口 德阳 成都 扬州 格兰特县 武汉 温州 石家庄 芒廷维尤 芝加哥 衢州 西宁 郑州