Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Zhang Tiejun, Yan Yuelan. STUDY ON LOCALIZATION OF MANUFACTURE OF UNDERRELAXATION PRESTRESSED STEEL SHANDS FOR CONTAINMENT OF Ling'ao NUCLEAR POWER PLANT (PHASE-Ⅱ) AND ITS USE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 61-66. doi: 10.13204/j.gyjz200904015
Citation: XUE Weichen, ZHANG Baozheng, CHEN Shengyang, JIANG Jiafei, GUO Dapeng. State of the Art on Mechanical Properties of Precast Prestressed Concrete Structures (for Buildings and Utility Tunnels)[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 9-20. doi: 10.3724/j.gyjzG24100801

State of the Art on Mechanical Properties of Precast Prestressed Concrete Structures (for Buildings and Utility Tunnels)

doi: 10.3724/j.gyjzG24100801
  • Received Date: 2024-10-08
    Available Online: 2024-11-06
  • Precast prestressed concrete structures, possessing the characteristics of both precast concrete structures and prestressed concrete structures, exhibit promising application prospects in the fields of construction and infrastructure. The paper systematically summarized the research progress made by domestic and international research teams, including the authors’ group, on the mechanical properties of precast prestressed concrete frames, shear walls, and utility tunnel structures. The research objects primarily encompassed two types of precast prestressed concrete frame structures (with precast and cast-in-situ joint cores), precast prestressed concrete shear wall structures, and precast prestressed concrete utility tunnel structures. Existing research indicates that all three structures possessed excellent bearing capacity and deformation recovery capability. Precast prestressed concrete frame structures with precast joint cores exhibited limited ductility and energy dissipation capability, displaying typical semi-rigid characteristics, while those with cast-in-situ joint cores demonstrated good seismic performance. Precast prestressed concrete shear wall structures primarily underwent rigid body rotation during seismic events, with no significant damage or residual deformation to the main wall body, but their ductility and energy dissipation capacity were unsatisfactory. Precast prestressed concrete utility tunnel structures demonstrated good waterproof performance, high bearing capacity and recovery capability. Furthermore, the applications and codes for these three types of structures were summarized. Finally, the research prospects for precast prestressed concrete structures were discussed.
  • [1]
    PAULAY T, PRIESTLEY M J N. Seismic design of reinforced concrete and masonry buildings[M]. New York: Wiley, 1992.
    [2]
    薛伟辰. 现代预应力结构设计[M]. 北京: 中国建筑工业出版社, 2003.
    [3]
    BLAKELEY R W G, PARK R. Seismic resistance of prestressed concrete beam-column assemblies [J]. Journal Proceedings, 1971, 68(9): 677-692.
    [4]
    STONE W C, CHEOK G S, STANTON J F. Performance of hybrid moment-resisting precast beam-column concrete connections subjected to cyclic loading [J]. ACI Structural Journal, 1995, 92(2): 229-249.
    [5]
    CHEOK G S, STONE W C, KUNNATH S K. Seismic response of precast concrete frames with hybrid connections [J]. ACI Structural Journal, 1998, 95(5): 527-539.
    [6]
    梁培新, 郭正兴. 新型装配整体式不对称混合连接节点试验研究[J]. 施工技术, 2010, 39(3): 63-65.
    [7]
    PRIESTLEY M J N. Overview of PRESSS research program[J]. PCI Journal, 1991, 36(4): 50-57.
    [8]
    NAKAKI S D, ENGLEKIRK R E. PRESSS industry seismic workshops: concept development[J]. PCI Journal, 1991, 36(5): 54-61.
    [9]
    STANTON J F, HAWKINS N M, HICKS T R. PRESSS project 1.3: connection classification and evaluation [J]. PCI Journal, 1991, 36(5): 62-71.
    [10]
    PRIESTLEY M J N. The PRESSS program:current status and proposed plans for phase III [J]. PCI Journal, 1996, 41(2): 22-40.
    [11]
    MACRAE G A,PRIESTLEY M J N. Precast post-tensioned un-grouted concrete beam-column subassemblage tests:structural systems research report No SSRP 94/10[R]. San Diego, La Jolla, USA:University of California, 1988.
    [12]
    PRIESTLEY M J N, MACRAE G A. Seismic tests of precast beam-to-column joint subassemblages with unbonded tendons [J]. PCI Journal, 1996, 41(1): 64-81.
    [13]
    PRIESTLEY M J N, TAO J. Seismic response of precast prestressed concrete frame with partially debonded tendons[J]. PCI Journal, 1993, 38(1): 58-69.
    [14]
    柳炳康, 张瑜中, 晋哲锋, 等. 预压装配式预应力混凝土框架接合部抗震性能试验研究[J]. 建筑结构学报, 2005, 26(2): 60-65

    ,116.
    [15]
    种迅, 孟少平, 潘其健. 后张预应力预制混凝土框架梁柱节点抗震性能试验研究[J]. 土木工程学报, 2012(12):38-44.
    [16]
    种迅,孟少平,潘其健,等.部分无黏结预制预应力混凝土框架及其节点抗震能力研究[J].地震工程与工程振动,2007(4):55-60.
    [17]
    LIAO X, ZHANG B, XUE W. Cyclic loading response of precast concrete beam-column connections with partially bonded draped prestressing tendon[J]. Engineering Structures, 2024, 302, 117435.
    [18]
    PRIESTLEY M J N, SRITHARAN S, CONLEY J R,et al. Preliminary results and conclusions from the PRESSS five-story precast concrete test building [J]. PCI Journal, 1999, 44(6):42-67.
    [19]
    柳炳康, 宋满荣, 黄慎江, 等. 三层预压装配式预应力混凝土框架抗震性能试验研究[J]. 建筑结构学报, 2011, 32(9): 99-106.
    [20]
    薛伟辰, 廖显东. 装配整体式部分粘结预应力混凝土框架结构抗震性能研究报告[R]. 上海: 同济大学, 2015.
    [21]
    LYU X, CUI Y, LIU J, et al. Shaking table test and numerical simulation of a 1/2-scale self-centering reinforced concrete frame [J]. Earthquake Engineering & Structural Dynamics, 2015, 44(12): 1899-1917.
    [22]
    薛伟辰, 胡翔.装配整体式自复位混凝土框架结构抗震性能研究报告[R]. 上海: 同济大学, 2019.
    [23]
    XUE W, XU Z, YANG Y. Experimental studies on precast prestressed concrete spatial frame[J]. ACI Structural Journal, 2011, 108(3): 370-377.
    [24]
    ENGLEKIRK R E. Design-construction of the Paramount:a 39-story precast prestressed concrete apartment building[J]. PCI Journal, 2002, 47(4): 56-71.
    [25]
    廖显东.预制预应力混凝土框架结构体系研究与应用进展[J].建筑结构,2015,45(22):65-70.
    [26]
    PCI. Seismic design of precast/prestressed concrete structures: PCI MNL 140-12[S]. 2nd ed. Chicago, IL: Precast Concrete Institute, 2007.
    [27]
    ACI. Design specification for unbonded post-tensioned precast concrete special moment frames satisfying ACI 374.1 (ACI 550.3-13) and Commentary:ACI 550.3-13[S]. Farmington Hills, MI: American Concrete Institute, 2013.
    [28]
    AIJ. Draft of Japanese design guidelines for precast construction of equivalent monolithic reinforced concrete buildings: AIJ 2000[S]. Tokyo: Architectural Institute of Japan, 2000.
    [29]
    NZS. Concrete structures standard. Part 1: The design of concrete structures: NZS 3101-2006[S]. Auckland :Council of Standard New Zealand, 2006.
    [30]
    中华人民共和国住房和城乡建设部. 装配式混凝土建筑技术标准: GB/T 51231—2016[S]. 北京:中国建筑工业出版社,2017.
    [31]
    中华人民共和国住房和城乡建设部. 预应力混凝土结构抗震设计标准:JGJ/T 140—2019[S]. 北京:中国建筑工业出版社,2019.
    [32]
    上海市住房和城乡建设管理委员会. 装配整体式混凝土公共建筑设计标准:DG/TJ 08-2154—2022[S]. 上海:同济大学出版社,2022.
    [33]
    KURAMA Y, SAUSE R, PESSIKI S, et al. Lateral load behavior and seismic design of unbonded post-tensioned precast concrete walls [J]. ACI Structural Journal, 1999, 96(4): 622-632.
    [34]
    KURAMA Y, PESSIKI S, SAUSE R, et al. Seismic behavior and design of unbonded post-tensioned precast concrete walls [J]. PCI Journal, 1999, 44(3): 72-89.
    [35]
    SOUDKI K A, RIZKALLA S H, DALKIW R W. Horizontal connections for precast concrete shear walls subjected to cyclic deformations Part 2: Prestressed connections [J]. PCI Journal, 1995, 40(5): 82-96.
    [36]
    PEREZ F J, SAUSE R, PESSIKI S. Analytical and experimental lateral load Behavior of unbonded posttensioned precast concrete walls [J]. Journal of Structural Engineering-ASCE, 2007, 133(11): 1531-1540.
    [37]
    ERKMEN B, SCHULTZ A E. Self-centering behavior of unbonded, post-tensioned precast concrete shear walls [J]. Journal of Earthquake Engineering, 2009, 13(7): 1047-1064.
    [38]
    RESTREPO J I, RAHMAN A. Seismic performance of self-centering structural walls incorporating energy dissipators [J]. Journal of Structural Engineering-ASCE, 2007, 133(11): 1560-1570.
    [39]
    SMITH B J, KURAMA Y C, MCGINNIS M J. Design and measured behavior of a hybrid precast concrete wall specimen for seismic regions [J]. Journal of Structural Engineering-ASCE, 2011, 137(10): 1052-1062.
    [40]
    SMITH B J, KURAMA Y C, MCGINNIS M J. Behavior of precast concrete shear walls for seismic regions: comparison of hybrid and emulative specimens [J]. Journal of Structural Engineering-ASCE, 2013, 139(11): 1917-1927.
    [41]
    孙巍巍, 孟少平, 蔡小宁. 后张无粘结预应力装配式短肢剪力墙拟静力试验研究 [J]. 南京理工大学学报, 2011, 35 (3): 422-426.
    [42]
    吴浩, 吕西林, 蒋欢军, 等. 预应力预制混凝土剪力墙抗震性能试验研究 [J]. 建筑结构学报, 2016, 37 (5): 208-217.
    [43]
    党像梁, 吕西林, 周颖. 底部开水平缝摇摆剪力墙抗震性能分析 [J]. 地震工程与工程振动, 2013, 33 (5): 182-189.
    [44]
    党像梁, 吕西林, 周颖. 底部开水平缝预应力自复位剪力墙试验设计及结果分析 [J]. 地震工程与工程振动, 2014, 34 (6): 103-112.
    [45]
    党像梁, 吕西林, 周颖. 底部开水平缝预应力自复位剪力墙试验研究及数值模拟 [J]. 地震工程与工程振动, 2014, 34 (4): 154-161.
    [46]
    陈适才, 闫维明, 李振宝, 等. 底部开缝预应力剪力墙结构力学性能的有限元分析 [J]. 防灾减灾工程学报, 2010, 30 (6): 631-636.
    [47]
    WELDON B D, KURAMA Y C. Nonlinear behavior of precast concrete coupling beams under lateral loads [J]. Journal of Structural Engineering, 2007, 133(11): 1571-1581.
    [48]
    BARBACHYN S M, KURAMA Y C, MCGINNIS M J, et al. Testing and behavior of a coupled shear wall structure with partially post-tensioned coupling beams [J]. ACI Structural Journal, 2016, 113(1): 111-124.
    [49]
    SHEN Q, KURAMA Y C. Nonlinear behavior of posttensioned hybrid coupled wall subassemblages [J]. Journal of Structural Engineering-ASCE, 2002, 128(10): 1290-1300.
    [50]
    GUO T, WANG L, XU Z, et al. Experimental and numerical investigation of jointed self-centering concrete walls with friction connectors [J]. Engineering Structures, 2018, 161: 192-206.
    [51]
    CATTANAC A, PAMPANIN S. 21st century precast: the detailing and manufacture of NZ’s first multi-storey PRESSS building [C]//Proceedings of the 2008 New Zealand Concrete Industry Conference. Rotorua, New Zealand:2008.
    [52]
    PAMPANIN S. Reality-check and renewed challenges in earthquake engineering: implementing low-damage structural systems from theory to practice [J]. Bulletin of The New Zealand Society for Earthquake Engineering, 2012, 45(4): 137-160.
    [53]
    STEVENSON M, PANIAN L, KOROLYK M, et al. Post-tensioned concrete walls and frames for seismic-resistance a case study of the David Brower Center [C]//Proceedings of the SEAOC. Berkeley,USA:2008: 1-8.
    [54]
    ACI. Acceptance criteria for special unbonded post-tensioned precast structural walls based on validation testing and commentary: ACI ITG 5.1-07[S]. Farmington Hills, MI: American Concrete Institute, 2007.
    [55]
    ACI. Requirements for design of a special unbonded post-tensioned precast shear wall satisfying ACI ITG-5.1 and commentary: ACI ITG 5.2-09[S]. Farmington Hills, MI: American Concrete Institute, 2009.
    [56]
    薛伟辰, 王庆华, 陈盛扬,等. 单、双舱槽型拼装混凝土综合管廊受力性能试验研究报告[R]. 上海: 同济大学, 2020.
    [57]
    寇有振. 预制预应力综合管廊受力性能研究[D]. 西安:长安大学,2018.
    [58]
    张铨婧. PC钢棒连接下的预制综合管廊的接头受力性能研究[D]. 广州:华南理工大学,2018.
    [59]
    胡翔,薛伟辰,王恒栋.上海世博园区预制预应力综合管廊接头防水性能试验研究[J].特种结构,2009,26(1):109-113.
    [60]
    中华人民共和国住房和城乡建设部. 城市综合管廊工程技术规范: GB 50838—2015[S]. 北京:中国计划出版社,2015.
    [61]
    上海市建设和交通委员会. 世博会园区综合管沟建设标准:DG/TJ 08-2017—2007[S].上海:2007.
    [62]
    上海市城乡建设和管理委员会. 综合管廊工程技术规范: DGJ 08-2017—2014[S].上海:同济大学出版社,2014.
    [63]
    胡翔,薛伟辰.预制预应力综合管廊受力性能试验研究[J].土木工程学报,2010,43(5):29-37.
    [64]
    薛伟辰, 陈盛扬. 双舱槽型拼装混凝土综合管廊环向加载试验研究报告[R]. 上海: 同济大学, 2024.
    [65]
    PIMENTEL M, COSTA P. Behavior of reinforced concrete box culverts under high embankments [J]. Journal of Structural Engineering, 2009, 135(4):366-375.
    [66]
    日本PC共同沟协会.预制拼装共同沟[EB/OL]. https://www.nipponhume.co.jp/pdf/pckyo201109.pdf.
  • Relative Articles

    [1]ZHOU Zhijun, TIAN Yeqing, ZHANG Mingyi, WANG Kangchao, ZHU Shanshan. Analysis on Bearing Characteristics of Pile Groups with Post-Grouting at Pile Ends in Loess Areas[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 182-190. doi: 10.3724/j.gyjzG22090209
    [2]ZHOU Peng, MA Hailong. NUMERICAL ANALYSIS ON LOAD TRANSFER OF TENSILE PILES AND BOTTOM-UPLIFTED PILES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 147-152. doi: 10.13204/j.gyjzG20040901
    [3]MA Hailong, BAO Yanran, MA Yufei, YAO Wenhong. LOAD-TRANSFER LAWS OF A SINGLE PILE AND DETERMINATION OF REASONABLE POSITIONS FOR GROUTING ON PILE SIDES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 173-176,196. doi: 10.13204/j.gyjzG20091705
    [4]Chen Lanyun, Shu Zhong, Yi Nangai. NUMERICAL SIMULATION OF VERTICAL BEARING CAPACITY OF POST-GROUTING BORED PILES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 78-81. doi: 10.13204/j.gyjz201107018
    [5]Qiang Xiaojun, Wan Changhong, Jiang Huihuang. ANALYSIS AND COMPARISON OF MODEL TEST REINFORCED EMBANKMENT BY PILE NET WITH PILE CAP[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 75-80. doi: 10.13204/j.gyjz200905016
    [6]Shen Baohan, Wang Haiyan, Liu Zhenliang, He Dexin. TEST STUDY OF DX PILE WITH FOUR BULBS AT XI'AN SXD PROJECT[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(2): 1-7. doi: 10.13204/j.gyjz200902001
    [7]Shen Baohan. DX PILE AND ITS SEVERAL PROBLEMS OF VERTICAL BEARING CAPACITIES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 84-95. doi: 10.13204/j.gyjz200908022
    [8]Dong Jinrong. INFLUENCE OF PILE BOTTOM SLIME ON SKIN FRICTION AND BEARING CAPACITY ESTIMATION TO PILE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 93-97. doi: 10.13204/j.gyjz200904021
    [9]Yi Yaolin, Liu Songyu. NUMERICAL ANALYSIS OF BEHAVIOR OF T-SHAPED CEMENT-SOIL DEEP MIXING PILE COMPOSITE FOUNDATION UNDER EMBANKMENT LOADS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 63-68. doi: 10.13204/j.gyjz200811016
    [10]Shen Baohan, Sun Junping, Wang Yan. THE CALCULATION OF VERTICAL COMPRESSIONAL BEARING CAPACITY OF DX PILE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 18-22. doi: 10.13204/j.gyjz200805004
    [11]Shen Baohan. THE CHARACTERISTICS OF LOAD TRANSFER OF DX PILES[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 5-12. doi: 10.13204/j.gyjz200805002
    [12]Luo Chunbo, Zhu Xiangrong, Kong Qinghua, Sun Jinyue. PILE-SOIL INTERACTION ANALYSIS OF O-CELL TESTING PILE BASED ON ELASTIC THEORY[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 60-63. doi: 10.13204/j.gyjz200708016
    [13]Zhang Shimin, Yu Feng. LOAD TRANSFER AND BEARING CAPACITY OF PILES JACKED INTO SANDY DEPOSITS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 61-64. doi: 10.13204/j.gyjz200705016
    [14]Peng Fuming, Yue Qingrui, Hao Jiping, Yang Yongxin. LOAD TRANSFER ANALYSIS OF STEEL STRUCTURES REPAIRED WITH FRP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 26-30,109. doi: 10.13204/j.gyjz200508006
    [15]Pei Jie, Shui Weihou, Cao Hui. NEW MODEL OF LONG PILE LOAD TRANSFER FOR SOFT FOUNDATION IN SHANGHAI[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 50-54,49. doi: 10.13204/j.gyjz200507015
    [16]Li Haiwang, Ju Yuwen, Zhao Mingwei, Liang Renwang. ANALYSIS AND FIELD STATIC LOADING TESTS OF CAST-IN-PLACE PILES WITH BRANCHES AND PLATES[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 21-23. doi: 10.13204/j.gyjz200403006
    [17]Wu Xiongzhi, An Xinzheng, Wu Ruizhi. STUDY ON BEARING MECHANISM OF SOIL-CEMENT PILE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 42-43,41. doi: 10.13204/j.gyjz200406014
    [18]Chun Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON UNIT SHAFT RESISTANCE AND UNIT END RESISTANCE OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 15-18,39. doi: 10.13204/j.gyjz200403004
    [19]Chen Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON BEARING MECHANISM AND LOAD TRANSMISSION MODE OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 5-8. doi: 10.13204/j.gyjz200403002
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.9 %FULLTEXT: 18.9 %META: 81.1 %META: 81.1 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %China: 5.7 %China: 5.7 %北京: 4.7 %北京: 4.7 %十堰: 0.9 %十堰: 0.9 %南京: 0.9 %南京: 0.9 %嘉兴: 0.9 %嘉兴: 0.9 %常州: 0.9 %常州: 0.9 %张家口: 5.7 %张家口: 5.7 %扬州: 2.8 %扬州: 2.8 %杭州: 1.9 %杭州: 1.9 %温州: 0.9 %温州: 0.9 %漯河: 4.7 %漯河: 4.7 %芒廷维尤: 31.1 %芒廷维尤: 31.1 %芝加哥: 0.9 %芝加哥: 0.9 %西宁: 17.9 %西宁: 17.9 %西雅图: 0.9 %西雅图: 0.9 %连云港: 1.9 %连云港: 1.9 %邯郸: 0.9 %邯郸: 0.9 %郑州: 2.8 %郑州: 2.8 %阳泉: 4.7 %阳泉: 4.7 %其他China北京十堰南京嘉兴常州张家口扬州杭州温州漯河芒廷维尤芝加哥西宁西雅图连云港邯郸郑州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (91) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return