Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XIAO Congzhen, LI Jianhui, MA Tianyi, WEI Yue, WU Zhenhong, QIAO Baojuan. Current Situation and Development of Retrofitting and Performance Improvement for Existing Building Structures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 20-30. doi: 10.3724/j.gyjzG23120812
Citation: XUE Weichen, ZHANG Baozheng, CHEN Shengyang, JIANG Jiafei, GUO Dapeng. State of the Art on Mechanical Properties of Precast Prestressed Concrete Structures (for Buildings and Utility Tunnels)[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 9-20. doi: 10.3724/j.gyjzG24100801

State of the Art on Mechanical Properties of Precast Prestressed Concrete Structures (for Buildings and Utility Tunnels)

doi: 10.3724/j.gyjzG24100801
  • Received Date: 2024-10-08
    Available Online: 2024-11-06
  • Precast prestressed concrete structures, possessing the characteristics of both precast concrete structures and prestressed concrete structures, exhibit promising application prospects in the fields of construction and infrastructure. The paper systematically summarized the research progress made by domestic and international research teams, including the authors’ group, on the mechanical properties of precast prestressed concrete frames, shear walls, and utility tunnel structures. The research objects primarily encompassed two types of precast prestressed concrete frame structures (with precast and cast-in-situ joint cores), precast prestressed concrete shear wall structures, and precast prestressed concrete utility tunnel structures. Existing research indicates that all three structures possessed excellent bearing capacity and deformation recovery capability. Precast prestressed concrete frame structures with precast joint cores exhibited limited ductility and energy dissipation capability, displaying typical semi-rigid characteristics, while those with cast-in-situ joint cores demonstrated good seismic performance. Precast prestressed concrete shear wall structures primarily underwent rigid body rotation during seismic events, with no significant damage or residual deformation to the main wall body, but their ductility and energy dissipation capacity were unsatisfactory. Precast prestressed concrete utility tunnel structures demonstrated good waterproof performance, high bearing capacity and recovery capability. Furthermore, the applications and codes for these three types of structures were summarized. Finally, the research prospects for precast prestressed concrete structures were discussed.
  • [1]
    PAULAY T, PRIESTLEY M J N. Seismic design of reinforced concrete and masonry buildings[M]. New York: Wiley, 1992.
    [2]
    薛伟辰. 现代预应力结构设计[M]. 北京: 中国建筑工业出版社, 2003.
    [3]
    BLAKELEY R W G, PARK R. Seismic resistance of prestressed concrete beam-column assemblies [J]. Journal Proceedings, 1971, 68(9): 677-692.
    [4]
    STONE W C, CHEOK G S, STANTON J F. Performance of hybrid moment-resisting precast beam-column concrete connections subjected to cyclic loading [J]. ACI Structural Journal, 1995, 92(2): 229-249.
    [5]
    CHEOK G S, STONE W C, KUNNATH S K. Seismic response of precast concrete frames with hybrid connections [J]. ACI Structural Journal, 1998, 95(5): 527-539.
    [6]
    梁培新, 郭正兴. 新型装配整体式不对称混合连接节点试验研究[J]. 施工技术, 2010, 39(3): 63-65.
    [7]
    PRIESTLEY M J N. Overview of PRESSS research program[J]. PCI Journal, 1991, 36(4): 50-57.
    [8]
    NAKAKI S D, ENGLEKIRK R E. PRESSS industry seismic workshops: concept development[J]. PCI Journal, 1991, 36(5): 54-61.
    [9]
    STANTON J F, HAWKINS N M, HICKS T R. PRESSS project 1.3: connection classification and evaluation [J]. PCI Journal, 1991, 36(5): 62-71.
    [10]
    PRIESTLEY M J N. The PRESSS program:current status and proposed plans for phase III [J]. PCI Journal, 1996, 41(2): 22-40.
    [11]
    MACRAE G A,PRIESTLEY M J N. Precast post-tensioned un-grouted concrete beam-column subassemblage tests:structural systems research report No SSRP 94/10[R]. San Diego, La Jolla, USA:University of California, 1988.
    [12]
    PRIESTLEY M J N, MACRAE G A. Seismic tests of precast beam-to-column joint subassemblages with unbonded tendons [J]. PCI Journal, 1996, 41(1): 64-81.
    [13]
    PRIESTLEY M J N, TAO J. Seismic response of precast prestressed concrete frame with partially debonded tendons[J]. PCI Journal, 1993, 38(1): 58-69.
    [14]
    柳炳康, 张瑜中, 晋哲锋, 等. 预压装配式预应力混凝土框架接合部抗震性能试验研究[J]. 建筑结构学报, 2005, 26(2): 60-65

    ,116.
    [15]
    种迅, 孟少平, 潘其健. 后张预应力预制混凝土框架梁柱节点抗震性能试验研究[J]. 土木工程学报, 2012(12):38-44.
    [16]
    种迅,孟少平,潘其健,等.部分无黏结预制预应力混凝土框架及其节点抗震能力研究[J].地震工程与工程振动,2007(4):55-60.
    [17]
    LIAO X, ZHANG B, XUE W. Cyclic loading response of precast concrete beam-column connections with partially bonded draped prestressing tendon[J]. Engineering Structures, 2024, 302, 117435.
    [18]
    PRIESTLEY M J N, SRITHARAN S, CONLEY J R,et al. Preliminary results and conclusions from the PRESSS five-story precast concrete test building [J]. PCI Journal, 1999, 44(6):42-67.
    [19]
    柳炳康, 宋满荣, 黄慎江, 等. 三层预压装配式预应力混凝土框架抗震性能试验研究[J]. 建筑结构学报, 2011, 32(9): 99-106.
    [20]
    薛伟辰, 廖显东. 装配整体式部分粘结预应力混凝土框架结构抗震性能研究报告[R]. 上海: 同济大学, 2015.
    [21]
    LYU X, CUI Y, LIU J, et al. Shaking table test and numerical simulation of a 1/2-scale self-centering reinforced concrete frame [J]. Earthquake Engineering & Structural Dynamics, 2015, 44(12): 1899-1917.
    [22]
    薛伟辰, 胡翔.装配整体式自复位混凝土框架结构抗震性能研究报告[R]. 上海: 同济大学, 2019.
    [23]
    XUE W, XU Z, YANG Y. Experimental studies on precast prestressed concrete spatial frame[J]. ACI Structural Journal, 2011, 108(3): 370-377.
    [24]
    ENGLEKIRK R E. Design-construction of the Paramount:a 39-story precast prestressed concrete apartment building[J]. PCI Journal, 2002, 47(4): 56-71.
    [25]
    廖显东.预制预应力混凝土框架结构体系研究与应用进展[J].建筑结构,2015,45(22):65-70.
    [26]
    PCI. Seismic design of precast/prestressed concrete structures: PCI MNL 140-12[S]. 2nd ed. Chicago, IL: Precast Concrete Institute, 2007.
    [27]
    ACI. Design specification for unbonded post-tensioned precast concrete special moment frames satisfying ACI 374.1 (ACI 550.3-13) and Commentary:ACI 550.3-13[S]. Farmington Hills, MI: American Concrete Institute, 2013.
    [28]
    AIJ. Draft of Japanese design guidelines for precast construction of equivalent monolithic reinforced concrete buildings: AIJ 2000[S]. Tokyo: Architectural Institute of Japan, 2000.
    [29]
    NZS. Concrete structures standard. Part 1: The design of concrete structures: NZS 3101-2006[S]. Auckland :Council of Standard New Zealand, 2006.
    [30]
    中华人民共和国住房和城乡建设部. 装配式混凝土建筑技术标准: GB/T 51231—2016[S]. 北京:中国建筑工业出版社,2017.
    [31]
    中华人民共和国住房和城乡建设部. 预应力混凝土结构抗震设计标准:JGJ/T 140—2019[S]. 北京:中国建筑工业出版社,2019.
    [32]
    上海市住房和城乡建设管理委员会. 装配整体式混凝土公共建筑设计标准:DG/TJ 08-2154—2022[S]. 上海:同济大学出版社,2022.
    [33]
    KURAMA Y, SAUSE R, PESSIKI S, et al. Lateral load behavior and seismic design of unbonded post-tensioned precast concrete walls [J]. ACI Structural Journal, 1999, 96(4): 622-632.
    [34]
    KURAMA Y, PESSIKI S, SAUSE R, et al. Seismic behavior and design of unbonded post-tensioned precast concrete walls [J]. PCI Journal, 1999, 44(3): 72-89.
    [35]
    SOUDKI K A, RIZKALLA S H, DALKIW R W. Horizontal connections for precast concrete shear walls subjected to cyclic deformations Part 2: Prestressed connections [J]. PCI Journal, 1995, 40(5): 82-96.
    [36]
    PEREZ F J, SAUSE R, PESSIKI S. Analytical and experimental lateral load Behavior of unbonded posttensioned precast concrete walls [J]. Journal of Structural Engineering-ASCE, 2007, 133(11): 1531-1540.
    [37]
    ERKMEN B, SCHULTZ A E. Self-centering behavior of unbonded, post-tensioned precast concrete shear walls [J]. Journal of Earthquake Engineering, 2009, 13(7): 1047-1064.
    [38]
    RESTREPO J I, RAHMAN A. Seismic performance of self-centering structural walls incorporating energy dissipators [J]. Journal of Structural Engineering-ASCE, 2007, 133(11): 1560-1570.
    [39]
    SMITH B J, KURAMA Y C, MCGINNIS M J. Design and measured behavior of a hybrid precast concrete wall specimen for seismic regions [J]. Journal of Structural Engineering-ASCE, 2011, 137(10): 1052-1062.
    [40]
    SMITH B J, KURAMA Y C, MCGINNIS M J. Behavior of precast concrete shear walls for seismic regions: comparison of hybrid and emulative specimens [J]. Journal of Structural Engineering-ASCE, 2013, 139(11): 1917-1927.
    [41]
    孙巍巍, 孟少平, 蔡小宁. 后张无粘结预应力装配式短肢剪力墙拟静力试验研究 [J]. 南京理工大学学报, 2011, 35 (3): 422-426.
    [42]
    吴浩, 吕西林, 蒋欢军, 等. 预应力预制混凝土剪力墙抗震性能试验研究 [J]. 建筑结构学报, 2016, 37 (5): 208-217.
    [43]
    党像梁, 吕西林, 周颖. 底部开水平缝摇摆剪力墙抗震性能分析 [J]. 地震工程与工程振动, 2013, 33 (5): 182-189.
    [44]
    党像梁, 吕西林, 周颖. 底部开水平缝预应力自复位剪力墙试验设计及结果分析 [J]. 地震工程与工程振动, 2014, 34 (6): 103-112.
    [45]
    党像梁, 吕西林, 周颖. 底部开水平缝预应力自复位剪力墙试验研究及数值模拟 [J]. 地震工程与工程振动, 2014, 34 (4): 154-161.
    [46]
    陈适才, 闫维明, 李振宝, 等. 底部开缝预应力剪力墙结构力学性能的有限元分析 [J]. 防灾减灾工程学报, 2010, 30 (6): 631-636.
    [47]
    WELDON B D, KURAMA Y C. Nonlinear behavior of precast concrete coupling beams under lateral loads [J]. Journal of Structural Engineering, 2007, 133(11): 1571-1581.
    [48]
    BARBACHYN S M, KURAMA Y C, MCGINNIS M J, et al. Testing and behavior of a coupled shear wall structure with partially post-tensioned coupling beams [J]. ACI Structural Journal, 2016, 113(1): 111-124.
    [49]
    SHEN Q, KURAMA Y C. Nonlinear behavior of posttensioned hybrid coupled wall subassemblages [J]. Journal of Structural Engineering-ASCE, 2002, 128(10): 1290-1300.
    [50]
    GUO T, WANG L, XU Z, et al. Experimental and numerical investigation of jointed self-centering concrete walls with friction connectors [J]. Engineering Structures, 2018, 161: 192-206.
    [51]
    CATTANAC A, PAMPANIN S. 21st century precast: the detailing and manufacture of NZ’s first multi-storey PRESSS building [C]//Proceedings of the 2008 New Zealand Concrete Industry Conference. Rotorua, New Zealand:2008.
    [52]
    PAMPANIN S. Reality-check and renewed challenges in earthquake engineering: implementing low-damage structural systems from theory to practice [J]. Bulletin of The New Zealand Society for Earthquake Engineering, 2012, 45(4): 137-160.
    [53]
    STEVENSON M, PANIAN L, KOROLYK M, et al. Post-tensioned concrete walls and frames for seismic-resistance a case study of the David Brower Center [C]//Proceedings of the SEAOC. Berkeley,USA:2008: 1-8.
    [54]
    ACI. Acceptance criteria for special unbonded post-tensioned precast structural walls based on validation testing and commentary: ACI ITG 5.1-07[S]. Farmington Hills, MI: American Concrete Institute, 2007.
    [55]
    ACI. Requirements for design of a special unbonded post-tensioned precast shear wall satisfying ACI ITG-5.1 and commentary: ACI ITG 5.2-09[S]. Farmington Hills, MI: American Concrete Institute, 2009.
    [56]
    薛伟辰, 王庆华, 陈盛扬,等. 单、双舱槽型拼装混凝土综合管廊受力性能试验研究报告[R]. 上海: 同济大学, 2020.
    [57]
    寇有振. 预制预应力综合管廊受力性能研究[D]. 西安:长安大学,2018.
    [58]
    张铨婧. PC钢棒连接下的预制综合管廊的接头受力性能研究[D]. 广州:华南理工大学,2018.
    [59]
    胡翔,薛伟辰,王恒栋.上海世博园区预制预应力综合管廊接头防水性能试验研究[J].特种结构,2009,26(1):109-113.
    [60]
    中华人民共和国住房和城乡建设部. 城市综合管廊工程技术规范: GB 50838—2015[S]. 北京:中国计划出版社,2015.
    [61]
    上海市建设和交通委员会. 世博会园区综合管沟建设标准:DG/TJ 08-2017—2007[S].上海:2007.
    [62]
    上海市城乡建设和管理委员会. 综合管廊工程技术规范: DGJ 08-2017—2014[S].上海:同济大学出版社,2014.
    [63]
    胡翔,薛伟辰.预制预应力综合管廊受力性能试验研究[J].土木工程学报,2010,43(5):29-37.
    [64]
    薛伟辰, 陈盛扬. 双舱槽型拼装混凝土综合管廊环向加载试验研究报告[R]. 上海: 同济大学, 2024.
    [65]
    PIMENTEL M, COSTA P. Behavior of reinforced concrete box culverts under high embankments [J]. Journal of Structural Engineering, 2009, 135(4):366-375.
    [66]
    日本PC共同沟协会.预制拼装共同沟[EB/OL]. https://www.nipponhume.co.jp/pdf/pckyo201109.pdf.
  • Relative Articles

    [1]GUO Wei, ZHANG Yipeng, WAN Yufeng, CHEN An, SUN Jing. A State-of-the-Art Review of Research and Application of FRP Composites in Railway Infrastructure[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 190-196. doi: 10.3724/j.gyjzG24040601
    [2]WU Ying, LI Aiqun. Application and Circled Layer Scene Construction of Digital Twin Technology from Coupling Perspective of "City-Building-People"[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 180-189. doi: 10.13204/j.gyjzG23012403
    [3]Qi Yicong. REGENERATIVE DESIGN METHOD AND ANALYSIS OF INDUSTRIAL HERITAGE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(04): 40-44.
    [4]Shu Biqing, Zheng Juan. DETECTION APPRAISAL AND STRENGTHENING OF A BENT FRAME STRUCTURE PLANT[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 139-142. doi: 10.13204/j.gyjz201406030
    [5]Sun Changling, Wang Zhiyuan. THE EXAMPLE ABOUT THE ADAPTIVE REUSEOF OF AN INDUSTRIAL PLANT[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 168-171. doi: 10.13204/j.gyjz201302034
    [6]Xue Suduo, Zhang Yigang, Cao Zi, Li Xiongyan. PROSPECT AND FURTHER DEVELOPMENT OF SEISMIC RESEARCH ON SPATIAL STRUCTURES OVER LAST THIRTY YEARS IN CHINA[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 105-116. doi: 10.13204/j.gyjz201306022
    [7]Zhao Jida, Lan Tian. THIRTY YEARS PROGRESS AND FUTURE PROSPECT OF SPATIAL STRUCTURES IN CHINA[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 131-138,164. doi: 10.13204/j.gyjz201304028
    [8]Cao Xia, Xie Dan, Jin Lingzhi. REINFORCEMENT AND RENOVATION OF THE OFFICE BUILDING OF A POLICE STATION IN GUILIN[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 143-146,64. doi: 10.13204/j.gyjz201204029
    [9]Tang Hongyuan, Wang Zeyun, Jia Yigang. ASSESSMENT AND STRENGTHEN FOR A CHEMICAL FIBRE FACTORY BUILDING SUBJECTED TO FIRE DISASTER[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(7): 152-155,170. doi: 10.13204/j.gyjz201207026
    [10]Zhou Hongbing. APPRAISAL OF THE IMPACT OF FOUNDATION CONSTRUCTION OF A HIGH-RISE BUILDING ON STRUCTURAL SAFETY OF THE ADJACENT BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(2): 116-119. doi: 10.13204/j.gyjz201002027
    [11]Yuan Chengfang, Niu Ditao, Wang Qinglin, Yuan Bo. SAFETY EVALUATION AND STRUCTURE STRENGTHENING OF A CHEMICAL PLANT SUBJECTED TO FIRE DISASTER[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 113-117. doi: 10.13204/j.gyjz201006026
    [12]Jiang Lixue, Zheng Qiaowen. SEISMIC ANALYSIS METHOD FOR RC FRAMES CONSIDERING INTERACTION BETWEEN PRIMARY AND SECONDARY STRUCTURES AND ITS APPLICATION[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 6-10. doi: 10.13204/j.gyjz200905002
    [13]Wang Junqiang. DAMAGES TO MULTISTORY BRICK-CONCRETE BUILDINGS AFTER WENCHUAN EARTHQUAKE AND THEIR APPRAISAL[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(1): 47-49,59. doi: 10.13204/j.gyjz200901009
    [14]Zhang Kaichen, Wang Feng, Si Bo, Li Ming. DESIGN AND CONSTRUCTION OF THE CORBEL BETWEEN THE OLD COLUMN AND THE NEW BEAM FOR A REFORM PROJECT[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 126-128. doi: 10.13204/j.gyjz200911029
    [15]Zheng Qizhen, Bao Yongliang, Wei Lin. THE DETECTION & IDENTIFICATION ON THE MAJOR STRUCTURE OF PROTECTED HISTORICAL SIGNIFICANT BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 1-3,7. doi: 10.13204/j.gyjz200908001
    [16]Shu Hongbo, Zheng Jianjun, Zhang Shaohua. QUALIFICATION AND REINFORCEMENT OF CONCRETE STRUCTURES AFTER FIRE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 25-27. doi: 10.13204/j.gyjz200908007
    [17]Dong Hairong, Qi Shaoming, Sun Xiaolu, Wu Xin. STUDY ON TECHNOLOGY OF ENERGY-SAVING RECONSTRUCTION ON EXISTING RESIDENTIAL BUILDINGS IN THE COLD DISTRICT[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(7): 4-6. doi: 10.13204/j.gyjz200907002
    [18]Tan Jun, Wang Ying, Zheng Wenzhong. DESIGN OF TWO TYPICAL POST-BUILT SUSPENDED STAIRCASES[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(4): 119-123,86. doi: 10.13204/j.gyjz200804030
    [19]Zhong Wenle, Chen Pei, Jiang Fengchang, Yang Genhong, Lu Jianwang. STRENGTHENING AND RECONSTRUCTION A CHEMICAL WORKSHOP INTO 2-HLS90 CONCRETE-MIXING BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 107-109. doi: 10.13204/j.gyjz200702027
    [20]Chun Qing, Qiu Hongxing, Huang Zhicheng, Pan Jianwu, Fang Zhibao. EXPERIMENTAL STUDY ON ANCHORAGE PERFORMANCE OF DOUBLE ADHESIVE ANCHORS FOR RC STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(2): 98-100. doi: 10.13204/j.gyjz200602029
  • Cited by

    Periodical cited type(12)

    1. 李凯,刘博,陈必光,杨卓,翟博渊. 重复压浆钢管桩在既有建筑基础加固中的应用. 广州建筑. 2025(01): 14-18 .
    2. 蔡旭东. 建筑结构加固改造技术与方法浅析. 广州建筑. 2025(01): 45-49 .
    3. 翟长海,丁俊男,史铁花,王代玉,黄颖. 既有建筑抗震韧性提升方法研究. 地震工程与工程振动. 2025(01): 18-27 .
    4. 黄晓旭,胡彪,李中流. 基于PDCA闭环模式的案例教学法在工程结构鉴定与加固课程中的应用. 科教导刊. 2025(01): 38-41 .
    5. 张吾健. 可持续发展理念下既有建筑改造设计策略分析. 住宅与房地产. 2024(06): 128-130 .
    6. 顾辉军. 既有建筑加固技术探析与应用——以某多层厂房加固为例. 建筑施工. 2024(05): 676-683 .
    7. 文应,蔡俊辉,孙健,郑代炳,江康. 城市更新改造中既有建筑的结构加固要点与实践. 新型城镇化. 2024(06): 57-60 .
    8. 苗元耀. 既有建筑结构加固改造原则及技术分析. 工程技术研究. 2024(12): 34-36 .
    9. 张荻,李涛杨,李伟. 城市更新为城市核心区注入新活力——既有建筑隔震托换加固改造项目的更新实践. 中国勘察设计. 2024(09): 67-69 .
    10. 梁春敏. 医院既有建筑局部结构加固实施难点及解决策略探究. 中国建筑金属结构. 2024(11): 87-89 .
    11. 陈光华,谢洪涛,孙柏锋. 基于价值工程的既有建筑加固改造项目经济性及模式创新研究. 工程管理学报. 2024(06): 117-122 .
    12. 吴梓楠,韩小雷,李建乐,黄世怡,董优. 建筑结构BIM正向设计的发展困境、关键技术与应用实践. 建筑结构. 2024(24): 136-144+135 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030255075100125
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.4 %FULLTEXT: 9.4 %META: 83.5 %META: 83.5 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.4 %其他: 9.4 %其他: 0.9 %其他: 0.9 %Baden: 0.4 %Baden: 0.4 %Central District: 0.6 %Central District: 0.6 %China: 0.3 %China: 0.3 %Kennedy Town: 0.3 %Kennedy Town: 0.3 %三明: 0.1 %三明: 0.1 %上海: 6.4 %上海: 6.4 %东莞: 4.5 %东莞: 4.5 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %保定: 0.3 %保定: 0.3 %信阳: 0.1 %信阳: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.4 %兰州: 0.4 %北京: 12.0 %北京: 12.0 %南京: 3.3 %南京: 3.3 %南宁: 0.1 %南宁: 0.1 %南昌: 0.3 %南昌: 0.3 %厦门: 0.1 %厦门: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.7 %台州: 0.7 %合肥: 0.7 %合肥: 0.7 %吉隆坡: 0.3 %吉隆坡: 0.3 %周口: 0.4 %周口: 0.4 %呼和浩特: 0.3 %呼和浩特: 0.3 %咸宁: 0.1 %咸宁: 0.1 %哈尔滨: 0.4 %哈尔滨: 0.4 %唐山: 0.1 %唐山: 0.1 %商丘: 0.1 %商丘: 0.1 %喀什: 0.3 %喀什: 0.3 %天津: 0.7 %天津: 0.7 %太原: 0.1 %太原: 0.1 %威海: 0.1 %威海: 0.1 %宁波: 0.1 %宁波: 0.1 %安庆: 0.3 %安庆: 0.3 %安康: 0.4 %安康: 0.4 %安阳: 0.4 %安阳: 0.4 %宜春: 0.7 %宜春: 0.7 %宣城: 0.6 %宣城: 0.6 %常德: 0.7 %常德: 0.7 %广州: 1.6 %广州: 1.6 %廊坊: 0.3 %廊坊: 0.3 %张家口: 0.6 %张家口: 0.6 %徐州: 0.6 %徐州: 0.6 %德阳: 0.1 %德阳: 0.1 %成都: 3.0 %成都: 3.0 %扬州: 0.6 %扬州: 0.6 %无锡: 0.3 %无锡: 0.3 %昆明: 1.6 %昆明: 1.6 %昭通: 0.1 %昭通: 0.1 %曲靖: 0.9 %曲靖: 0.9 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.4 %杭州: 1.4 %松原: 0.4 %松原: 0.4 %柏林: 0.1 %柏林: 0.1 %武汉: 2.3 %武汉: 2.3 %沈阳: 0.3 %沈阳: 0.3 %河内: 0.1 %河内: 0.1 %泉州: 0.1 %泉州: 0.1 %济南: 1.6 %济南: 1.6 %济宁: 0.1 %济宁: 0.1 %海口: 0.4 %海口: 0.4 %淄博: 0.3 %淄博: 0.3 %淮安: 0.3 %淮安: 0.3 %深圳: 3.0 %深圳: 3.0 %温州: 0.6 %温州: 0.6 %湖州: 0.1 %湖州: 0.1 %漯河: 0.9 %漯河: 0.9 %漳州: 0.1 %漳州: 0.1 %濮阳: 0.9 %濮阳: 0.9 %烟台: 0.3 %烟台: 0.3 %珠海: 0.3 %珠海: 0.3 %益阳: 0.1 %益阳: 0.1 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.6 %石家庄: 0.6 %福州: 1.0 %福州: 1.0 %芒廷维尤: 5.9 %芒廷维尤: 5.9 %芝加哥: 1.7 %芝加哥: 1.7 %苏州: 0.6 %苏州: 0.6 %荆门: 0.4 %荆门: 0.4 %莆田: 0.9 %莆田: 0.9 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.4 %衢州: 0.4 %西宁: 4.1 %西宁: 4.1 %西安: 1.6 %西安: 1.6 %贵阳: 0.4 %贵阳: 0.4 %赣州: 0.1 %赣州: 0.1 %运城: 0.7 %运城: 0.7 %郑州: 1.2 %郑州: 1.2 %重庆: 1.3 %重庆: 1.3 %金华: 0.1 %金华: 0.1 %金昌: 0.1 %金昌: 0.1 %银川: 0.4 %银川: 0.4 %镇江: 0.3 %镇江: 0.3 %长春: 0.4 %长春: 0.4 %长沙: 3.5 %长沙: 3.5 %阜新: 0.1 %阜新: 0.1 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %青岛: 0.7 %青岛: 0.7 %马鞍山: 0.3 %马鞍山: 0.3 %鹰潭: 0.1 %鹰潭: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他BadenCentral DistrictChinaKennedy Town三明上海东莞乌鲁木齐保定信阳六安兰州北京南京南宁南昌厦门台北台州合肥吉隆坡周口呼和浩特咸宁哈尔滨唐山商丘喀什天津太原威海宁波安庆安康安阳宜春宣城常德广州廊坊张家口徐州德阳成都扬州无锡昆明昭通曲靖朝阳杭州松原柏林武汉沈阳河内泉州济南济宁海口淄博淮安深圳温州湖州漯河漳州濮阳烟台珠海益阳眉山石家庄福州芒廷维尤芝加哥苏州荆门莆田蚌埠衡阳衢州西宁西安贵阳赣州运城郑州重庆金华金昌银川镇江长春长沙阜新阿姆斯特丹青岛马鞍山鹰潭齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (91) PDF downloads(6) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return