Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Lei, JIANG Mengyao, SHU Qianjin, ZHU Mingquan, MIAO Shenglong. Experimental Research on Interface Bonding Performance of Concrete-Filled Aluminum Tubular Columns at Room Temperatures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 147-152. doi: 10.3724/j.gyjzG24051001
Citation: WANG Lei, JIANG Mengyao, SHU Qianjin, ZHU Mingquan, MIAO Shenglong. Experimental Research on Interface Bonding Performance of Concrete-Filled Aluminum Tubular Columns at Room Temperatures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 147-152. doi: 10.3724/j.gyjzG24051001

Experimental Research on Interface Bonding Performance of Concrete-Filled Aluminum Tubular Columns at Room Temperatures

doi: 10.3724/j.gyjzG24051001
  • Received Date: 2024-05-10
    Available Online: 2024-11-06
  • In order to study the interface bonding performance of concrete-filled aluminum tubular columns at room temperatures, three factors including concrete strength and component slenderness ratio were considered. A bond-slip push-out test was conducted on concrete-filled aluminum tubular stub columns, and the load-slip correlation, and longitudinal strain distribution of aluminum tubes under different loads were obtained. The feasibility of existing constitutive models for bond-slip of concrete-filled steel tube columns in evaluating the peak bonding strength and residual bonding strength of concrete-filled aluminum tubular concrete columns was analyzed. The research results indicated that the trend of the load-slip curve of each specimen was basically consistent; the longitudinal strain on the surface of the aluminum tube was proportional to its distance from the loading end, and the bonding stress was uniformly distributed within the interface length range; the decrease in concrete strength and interface bonding length would lead to a decrease in ultimate bonding strength and residual bonding strength, and the impact of concrete strength was greater. On this basis, a calculation formula for the interfacial bonding strength of concrete-filled aluminum tubular columns at room temperatures was proposed.
  • [1]
    SHAKIR K H. Push out strength of concrete-filled steel hollow sections [J].The Structural Engineer, 1993, 71(13): 230-233.
    [2]
    SHAKIR K H. Resistance of concrete-filled steel hollow tubes to push out forces [J].The Structural Engineer, 1993, 71(13): 234-243.
    [3]
    ROEDER W C, CAMERON B. Composite action in concrete filled tubes [ J ].Journal of Structure Engineering, 1999, 125(5): 477-484.
    [4]
    薛立红,蔡绍怀. 钢管混凝土柱组合界面的黏结强度(上) [ J].建筑科学, 1996(3): 22-28.
    [5]
    薛立红,蔡绍怀. 荷载偏心率对钢管混凝土柱组合界面粘结强度的影响[ J].建筑科学, 1997(2): 22-25.
    [6]
    刘永健,池建军. 钢管混凝土界面抗剪粘结强度的推出试验[ J].工业建筑, 2006,36(4): 78-80.
    [7]
    刘永健,刘君平,池建军. 钢管混凝土界面抗剪粘结滑移力学性能试验[J].广西大学学报(自然科学版), 2010, 35(1): 17-23, 29.
    [8]
    TAO Z, SONG T Y, UY B, et al. Bond behavior in concretefilled steel tubes [J].Journal of Constructional Steel Research, 2016, 120:81-93.
    [9]
    LU Y, LU Z, LI S, et al. Bond behavior of steel-fiber-reinforced self-stressing and self-compacting concrete-filled steel tube columns for a period of 2. 5 years [ J].Construction and Building Materials, 2018, 167: 33-43.
    [10]
    ALLOUZI R A, ALMASAEID H H. Prediction of bond-slip behavior of circular / squared concrete-filled steel tubes [J].Buildings, 2022, 12(4),456.
    [11]
    TOMII M, YOSHIMURA K, MORISHITA Y. A method of improving bond strength between steel tube and concrete core cast in circular steel tubular columns [J].Transaction of Japan Concrete Institute, 1980(2): 319-326.
    [12]
    中国国家标准化管理委员会. 金属材料拉伸试验第1部分: 室温试验方法: GB / T 228. 1—2021[ S].北京:中国标准出版社, 2021. [ 13] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准:GB / T 50081—2002[ S].北京:中国建筑工业出版社, 2003.
    [14]
    陈宗平, 刘祥, 徐金俊,等. 高温后方钢管高强混凝土界面粘结性能试验研究[ J].建筑结构学报, 2017, 38(6): 133-143.
    [15]
    陈宗平, 刘祥, 周文祥,等. 高温后圆钢管高强混凝土界面粘结性能试验研究[ J].工程力学, 2018, 35(8):192-200

    , 256.
    [16]
    吴兵. 火灾前后钢管混凝土核心柱界面粘结性能的研究[ D].杭州: 浙江大学, 2006.
    [17]
    American Institute of Steel Construction (AISC).Specification for structural steel buildings: ANSI / AISC 360- 16[ S ].Chicago: AISC,2016.
    [18]
    张春亮. 高温后钢管混凝土的界面粘结性能试验研究[ D].北京:北方工业大学,2014.
    [19]
    ROEDER C W, CAMERON B, BROWN C B. Composite action in concrete filled tubes [ J].Journal of Structural Engineering, 1999, 125(5): 477-484.
    [20]
    LYU W Q, HAN L H. Investigation on bond strength between recycled aggregate concrete (RAC) and steel tube in RAC-filled steel tubes[ J].Journal of Constructional Steel Research, 2019, 155: 438-459.
  • Relative Articles

    [1]MIN Xinzhe, TU Yongming. Experimental Research on the Fatigue Damage Characteristics of CFRP Plate-Concrete Bonding Interface[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 254-262. doi: 10.3724/j.gyjzG24091902
    [2]WANG Lei, WU Yihui, JIANG Mengyao, SHU Qianjin. Research on the Bearing Capacity of Concrete-Filled Double-Skin Circular Aluminum Tube Short Columns Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 149-155. doi: 10.3724/j.gyjzG24050615
    [3]ZHU Zhangfeng, RICHARD Liew, DU Yong, YAO Bing. Interfacial Bond Performance Experiment on High-Strength Steel Pipe Joints for Prefabricated Composite Structural Columns[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 120-124,179. doi: 10.13204/j.gyjzG21100816
    [4]LUO Peiyun, LEI Yongwang, ZHU Binrong, ZHAO Weiping. EXPERIMENTAL RESEARCH ON INTERFACE BOND PERFORMANCES BETWEEN LSAW STEEL PIPES AND CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 77-84. doi: 10.13204/j.gyjzG20052008
    [5]XIE Wangjun, CHEN Zongping, ZHOU Ji. EXPERIMENTAL STUDY ON BONDING PROPERTIES OF CONCRETE FILLED SQUARE STEEL TUBES AFTER FIRE SPRINKLER COOLING[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 135-143,134. doi: 10.13204/j.gyjzG19122306
    [16]Yuan Guanglin, Wang Xiao, Li Qingtao, Tian Ludan, Zhang Yunfei. EXPERIMENTAL RESEARCH ON INTERFACIAL BONDING PROPERTY OF HIGH PERFORMANCE CGM TO CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(04): 69-72.
    [17]Chen Zongping, Xu Jinjun, Huang Kaiwang, Su Yisheng. TEST STUDY ON BOND PROPERTIES BETWEEN HIGH STRENGTH STEEL BAR AND RECYCLED AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 16-20. doi: 10.13204/j.gyjz201311004
    [18]Xu Kaicheng, Chen Mengcheng, He Xiaoping. EXPERIMENTAL ANALYSIS OF CFST INTERFACE BONDING PROPERTY BY CORROSION OF CHLORINE ION[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(1): 71-74,98. doi: 10.13204/j.gyjz201301016
  • Cited by

    Periodical cited type(1)

    1. 徐英栋. 钢管混凝土接触面黏结滑移性能影响因素分析. 江西建材. 2025(01): 8-10 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.6 %FULLTEXT: 13.6 %META: 86.4 %META: 86.4 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 43.2 %其他: 43.2 %张家口: 9.1 %张家口: 9.1 %成都: 2.3 %成都: 2.3 %扬州: 2.3 %扬州: 2.3 %朝阳: 2.3 %朝阳: 2.3 %杭州: 4.5 %杭州: 4.5 %芒廷维尤: 18.2 %芒廷维尤: 18.2 %芝加哥: 6.8 %芝加哥: 6.8 %西宁: 2.3 %西宁: 2.3 %西安: 2.3 %西安: 2.3 %贵阳: 2.3 %贵阳: 2.3 %运城: 2.3 %运城: 2.3 %长沙: 2.3 %长沙: 2.3 %其他张家口成都扬州朝阳杭州芒廷维尤芝加哥西宁西安贵阳运城长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (37) PDF downloads(0) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return