Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LUO Bin, WANG Huan, BAI Lianwei, REN Zhaoqing, WANG Shanshan. Experimental Study and Numerical Analysis of Hybrid Fiber Reinforced Self-Compacting Concrete Segments at High Temperatures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 226-237. doi: 10.3724/j.gyjzG23071115
Citation: LUO Bin, WANG Huan, BAI Lianwei, REN Zhaoqing, WANG Shanshan. Experimental Study and Numerical Analysis of Hybrid Fiber Reinforced Self-Compacting Concrete Segments at High Temperatures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 226-237. doi: 10.3724/j.gyjzG23071115

Experimental Study and Numerical Analysis of Hybrid Fiber Reinforced Self-Compacting Concrete Segments at High Temperatures

doi: 10.3724/j.gyjzG23071115
  • Received Date: 2023-07-11
    Available Online: 2024-06-22
  • To study the preloading on the mechanical properties of hybrid fiber self-compacting concrete segments at high-temperatures, high-temperature tests were conducted on five segments to obtain the segment furnace temperature, concrete temperature, deformation, and failure mode. A calculation subroutine was developed based on ABAQUS software to establish a temperature field and mechanical analysis model for hybrid reinforced fiber self-compacting concrete segments. The appropriate constitutive relations during the different stages were selected, and the influence of explict or implicit transient thermal strain and preload on segment displacement and equivalent plastic tensile strain was analyzed. The results showed that as the preload increased, the number of cracks on the side of the segment increased and the length became smaller, the number of cracks on the outer arc surface decreased, the distribution of cracks on the inner arc surface became more uniform, and the addition of fibers was helpful to reduce the average crack spacing and the high temperature damage of concrete at the arch foot of segment. The transient thermal strain had an important influence on the equivalent plastic tensile strain distribution of the segment during the cooling stage. When the explicit transient thermal strain was used, the equivalent plastic tensile strain distribution of the segment was more consistent with the test crack area.
  • [1]
    CHANG S H, CHOI S W, BAE G J. Assessment of fire-induced damage on concrete segment of shield TBM tunnel[J]. Key Engineering Materials, 2006, 42: 321-323.
    [2]
    闫治国. 隧道衬砌结构火灾高温力学行为及耐火方法研究[D]. 上海: 同济大学, 2007.
    [3]
    闫治国, 朱合华, 梁利. 火灾高温下隧道衬砌管片力学性能试验[J]. 同济大学学报(自然科学版), 2012, 40(6): 823-828.
    [4]
    YAN Z G, ZHU H H, JU J W. Behavior of reinforced concrete and steel fiber reinforced concrete shield TBM tunnel linings exposed to high temperatures[J]. Construction and Building Materials, 2013, 38(2): 610-618.
    [5]
    YAN Z G, SHEN Y, ZHU H H, et al. Experimental investigation of reinforced concrete and hybrid fibre reinforced concrete shield tunnel segments subjected to elevated temperature[J]. Fire Safety Journal, 2015, 71: 86-99.
    [6]
    李俊杰. 盾构隧道管片及接头耐火试验方法研究[D]. 徐州: 中国矿业大学, 2021.
    [7]
    郭信君. 盾构隧道混凝土管片构件抗火性能试验及模拟分析研究[D]. 长沙: 中南大学, 2013.
    [8]
    张高乐, 张稳军, 喻国伦. 火灾高温下盾构隧道衬砌结构热力耦合模型试验[J]. 中国公路学报, 2019, 32(7): 120-128.
    [9]
    张聪. 混杂纤维自密实混凝土梁高温作用前后的受弯性能[D]. 大连: 大连理工大学, 2013.
    [10]
    梁宇. 混杂纤维自密实混凝土梁高温后抗剪性能试验研究[D]. 长春: 东北电力大学,2020.
    [11]
    HUA N, KHORASANI N E, TESSARI A, et al. Experimental study of fire damage to reinforced concrete tunnel slabs[J/OL]. Fire Safety Journal, 2022, 127[2021-11-25]. https://doi.org/10.1016/j.firesaf.2021.103504.
    [12]
    LAI H P, WANG S Y, XIE Y L. Experimental research on temperature field and structure performance under different lining water contents in road tunnel fire[J]. Tunnelling and Underground Space Technology, 2014, 43: 327-335.
    [13]
    KHALIQ W, KODUR V. Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures[J]. Cement and Concrete Research, 2011, 41: 1112-1122.
    [14]
    KODUR V, KHALIQ W. Effect of temperature on thermal properties of different types of high-strength concrete[J]. Journal of Materials in Civil Engineering, 2011, 23(6): 793-80.
    [15]
    NOVAK J, KOHOUKOVA A. Fire response of hybrid fiber reinforced concrete to high temperature[J]. Procedia Engineering, 2017, 172: 784-790.
    [16]
    郑文忠, 王睿, 王英. 活性粉末混凝土热工参数试验研究[J]. 建筑结构学报, 2014, 35(9): 107-114.
    [17]
    王冠. 非均匀受火约束高强纤维混凝土柱的抗火性能研究[D]. 苏州: 苏州科技学院, 2014.
    [18]
    韩东. 高温下超韧纤维混凝土结构温度场及力学性能研究[D]. 沈阳: 沈阳建筑大学, 2017.
    [19]
    王程沛. 钢筋纤维混凝土构件抗火性能有限元分析[D]. 长春: 东北电力大学, 2021.
    [20]
    KHALIQ W, KODUR V. Effectiveness of polypropylene and steel fibers in enhancing fire resistance of high-strength concrete columns[J/OL]. Journal of Structural Engineering, 2018, 144(3). [2018-05-01]. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001981.
    [21]
    SADAOUI A, KHENANE A. Effect of transient creep on behaviour of reinforced concrete columns in fire[J]. Engineeing Structures, 2009, 31: 2203-2208.
    [22]
    SADAOUI A, KHENANE A. Effect of transient creep on behaviour of reinforced concrete beams in fire[J]. ACI Materials Journal, 2012, 109(6): 607-616.
    [23]
    王勇. 钢框架结构中2×2区格连续混凝土板抗火性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
    [24]
    YI S, ZHU H H, YAN Z G, et al. Semi-analytical thermo-mechanical model for the shield tunnel segmental joint subjected to elevated temperatures[J/OL]. Tunnelling and Underground Space Technology, 2021, 118.[2021-09-17]. https:/doi.org/10.1016/j.tust.2021.104170.
    [25]
    朱伟. 隧道标准规范(盾构篇)及解说[M]. 北京: 中国建筑工业出版社, 2001.
    [26]
    陈思威. 钢板加固盾构隧道管片衬砌承载性能及其高温下劣化规律研究[D]. 广州: 华南理工大学,2021.
    [27]
    中华人民共和国住房和城乡建设部. 建筑设计防火规范:GB 50016—2014[S]. 北京: 中国计划出版社, 2014.
    [28]
    王勇, 王腾焱, 袁广林, 等. 基于不同混凝土本构模型的混凝土双向板火灾行为分析[J]. 工程力学, 2016, 33(11): 208-219.
    [29]
    王广勇, 薛素铎. 混凝土瞬态热应变及计算[J]. 北京工业大学学报, 2008, 34(4): 387-390.
    [30]
    TAO Z, WANG X Q, UY B. Stress-strain curves of structural steel and reinforcing steel after exposure to elevated temperatures[J]. Journal of Materials in Civil Engineering, 2013, 25(9): 1306-1316.
  • Relative Articles

    [1]WANG Xin, HUANG Leiqun, QIN Weiheng, LIAO Haoyu, CHEN Zongping. Experimental Study on Mechanical Properties of Hybrid Fiber-Reinforced Manufactured Sand Concrete[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 199-208. doi: 10.13204/j.gyjzG22052305
    [2]XIAO Liangli, JI Qinmin, DU Zhuang. Study on Properties of GFRP-Reinforced Concrete Stubs with Hybrid Fibers Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(2): 37-41,125. doi: 10.13204/j.gyjzG20120206
    [3]CAO Yuxin. PROPORTION OPTIMIZATION DESIGN OF STEEL FIBER REINFORCED CONCRETE MIX FOR TUNNEL SEGMENTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 101-104,159. doi: 10.13204/j.gyjzG20010102
    [4]XIE Wangjun, CHEN Zongping, ZHOU Ji. EXPERIMENTAL STUDY ON BONDING PROPERTIES OF CONCRETE FILLED SQUARE STEEL TUBES AFTER FIRE SPRINKLER COOLING[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 135-143,134. doi: 10.13204/j.gyjzG19122306
    [8]Jiao Youjin, Wang Hongtao, Yang Caiqian, Wu Zhishen. STUDY ON THE FLEXURAL BEHAVIOR OF PRE-STRESSED C/BFRP-CONCRETE COMPOSITE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 23-26. doi: 10.13204/j.gyjz201306006
    [9]Du Yuanfang, Wang Sheliang, Yu Binshan, Zhang Bo. EXPERIMENTAL STUDY ON HYBRID RENEWABLE FIBER EFFECT ON STRENGTH OF RECYCLED AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 12-15. doi: 10.13204/j.gyjz201311003
    [10]Du Yuanfang, Wang Sheliang, Zhao Qin, Fan Yujiang. SHAKING TABLE TEST OF ENHANCED RECYCLED AGGREGATE CONCRETE FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 30-33,44. doi: 10.13204/j.gyjz201311007
    [11]Yang Jianhui, Li Yanfei, Ding Peng, Zhao Hongbing. EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF HYBRID FIBERS REINFORCED SHOTCRETE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 101-105. doi: 10.13204/j.gyjz201308022
    [12]Chen Xujun, Li Huafeng, Yang Yongxin. EXPERIMENTAL STUDY ON FLEXURAL FATIGUE PERFORMANCE OF RC BEAMS STRENGTHENED WITH HYBRID FIBER SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(6): 77-82. doi: 10.13204/j.gyjz201206017
    [13]Han Zhibo, Ding Yining. EXPERIMENTAL STUDY ON CRACK MONITORING OF HYBRID FIBERS HIGH PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 102-105. doi: 10.13204/j.gyjz201211022
    [14]Yang Zhaopeng, Bi Qiaowei, Wang Hui. MECHANICAL PROPERTIES OF STEEL FIBER AND POLYPROPYLENE FIBER REINFORCED REACTIVE POWDER CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(9): 77-79. doi: 10.13204/j.gyjz201009020
    [15]You Zhiguo, Qin Shuang, Ding Yining. EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF HYBRID FIBER REINFORCED SELF-COMPACTING CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(5): 87-91. doi: 10.13204/j.gyjz201005018
    [16]Ma Baoguo, Luo Zhongtao, Wang Kai, Zou Dinghua, Wang Yingbin, Wang Xingang. THE MODEL OF CONCRETE DURABILITY FAILING WITH TIME-CALCULATION METHOD USED IN THE SERVICE-LIFE PREDICTION OF HILS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 82-84,74. doi: 10.13204/j.gyjz200811020
    [17]Bi Yuanzhi, Hua Yuan, Zhang Dalin, Cai Donghong, Wang Congshu, Xia Bipei, Yang Yaowen. EXPERIMENTAL STUDY ON RAISING STRENGTH AND TOUGHNESS OF CONCRETE BY MODIFIED COARSE POLYPROPYLENE-STEEL FIBERS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 85-88,114. doi: 10.13204/j.gyjz200811021
    [18]Huang Manhua, Xie Huicai, Liu Jinwei, Jian Huali. MECHANICAL PERFORMANCE AND SMART PROPERTY OF MIXED FIBRE REINFORCED MORTAR[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 76-78. doi: 10.13204/j.gyjz200504022
    [19]Wang Zhe, Li Jingshuang. EXPERIMENTAL RESEARCH ON BENDING STIFFNESS OF CIRCUMFERENTIAL JOINT IN SHIELD TUNNELING SEGMENT[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 86-88. doi: 10.13204/j.gyjz200501027
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.510
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.4 %FULLTEXT: 13.4 %META: 86.6 %META: 86.6 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 25.4 %其他: 25.4 %北京: 1.5 %北京: 1.5 %南京: 1.5 %南京: 1.5 %天津: 1.5 %天津: 1.5 %太原: 1.5 %太原: 1.5 %廊坊: 1.5 %廊坊: 1.5 %张家口: 6.0 %张家口: 6.0 %徐州: 4.5 %徐州: 4.5 %成都: 3.0 %成都: 3.0 %漯河: 3.0 %漯河: 3.0 %石家庄: 6.0 %石家庄: 6.0 %福州: 1.5 %福州: 1.5 %芒廷维尤: 28.4 %芒廷维尤: 28.4 %芝加哥: 1.5 %芝加哥: 1.5 %苏州: 1.5 %苏州: 1.5 %西宁: 3.0 %西宁: 3.0 %西安: 1.5 %西安: 1.5 %运城: 7.5 %运城: 7.5 %其他北京南京天津太原廊坊张家口徐州成都漯河石家庄福州芒廷维尤芝加哥苏州西宁西安运城

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (57) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return