Citation: | WANG Shuangjie, CHEN Jianbing, JIN Long, DONG Yuanhong. Research Advances and Prospect of Scale Effect Theory of Permafrost Roadbed[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 45-53. doi: 10.13204/j.gyjzG23081216 |
[1] |
CHEN D, WANG S, ZHANG X, et al. Experimental study on performance of crushed-rock embankment with heat-induced asphalt pavement[J/OL]. Transportation Geotechnics, 2019, 21[2023-08-12].https://doi.org/10.1016/j.trgeo.2019.100270.
|
[2] |
DONG Y, CHEN J, YUAN K, et al.A field embankment test along the Gonghe-Yushu expressway in the permafrost regions of the Qinghai-Tibet Plateau[J/OL].Cold Regions Science and Technology,2020,170[2023-08-12].https://doi.org/10.1016/j.coldregions.2019.102941.
|
[3] |
DONG Y, PEI W, LIU G, et al. In-situ experimental and numerical investigation on the cooling effect of a multi-lane embankment with combined crushed-rock interlayer and ventilated ducts in permafrost regions[J]. Cold Regions Science & Technology, 2014(104/105):97-105.
|
[4] |
陈冬根,朱英珍. 多年冻土区宽幅路基温度与变形规律试验研究[J].公路,2019,64(2):1-7.
|
[5] |
朱林楠.高原冻土区不同下垫面的附面层研究[J].冰川冻土,1988(1):8-14.
|
[6] |
袁堃,章金钊,樊凯,等.多年冻土地区空心块通风路基应用效果及数值模拟[J].公路交通科技,2013,30(1):56-62
,73.
|
[7] |
曹元兵,盛煜,吴吉春,等.上边界条件对多年冻土地温场数值模拟结果的影响分析[J].冰川冻土,2014,36(4):802-810.
|
[8] |
栗晓林,马巍,穆彦虎,等.高海拔多年冻土区高速公路分离式通风管路基的降温效果研究[J].岩石力学与工程学报,2022,41(增刊2):3488-3498.
|
[9] |
汪海年,窦明健. 青藏高原多年冻土区路基温度场数值模拟[J].长安大学学报(自然科学版),2006(4):11-15.
|
[10] |
白青波,李旭,田亚护. 路基温度场长期模拟中的地表热边界条件研究[J].岩土工程学报,2015,37(6):1142-1149.
|
[11] |
罗晓晓,俞祁浩,马勤国,等. 基于附面层理论的路基热边界模型[J].中南大学学报(自然科学版),2019,50(3):658-668.
|
[12] |
CHAI M, LI N, LIU F, et al. A calculation model for ground surface temperature in high-altitude regions of the Qinghai-Tibet Plateau, China[J/OL]. Remote Sensing, 2022, 14(20)[2023-08-12].https://doi.org/10.3390/rs14205219.
|
[13] |
汪双杰,崔福庆,陈建兵,等.基于地气耦合模型的多年冻土区宽幅路基温度场数值模拟[J].中国公路学报,2016,29(6):169-178.
|
[14] |
LING F, ZHANG T. A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water[J]. Cold Regions Science and Technology, 2004, 38(1):1-15.
|
[15] |
NIU F, LIU X, MA W, et al. Monitoring study on the boundary thermal conditions of duct-ventilated embankment in permafrost regions[J]. Cold Regions Science and Technology, 2008, 53(3):305-316.
|
[16] |
AKE H. Mathematical model for paved surface summer and winter temperature:comparison of calculated and measured temperatures[J]. Cold Regions Science and Technology, 2004, 40(1/2):1-17.
|
[17] |
ZHANG Y, CHEN W, CIHLAR J. A process-based model for quantifying the impact of climate change on permafrost thermal regimes[J/OL]. Journal of Geophysical Research:Atmospheres, 2003, 108[2023-08-12].https://doi.org/10.1029/2002JD003354.
|
[18] |
张明礼,温智,董建华,等.多年冻土活动层浅层包气带水-汽-热耦合运移规律[J].岩土力学,2018,39(2):561-570.
|
[19] |
ZHANG M, WANG J, LAI Y. Hydro-thermal boundary conditions at different underlying surfaces in a permafrost region of the Qinghai-Tibet Plateau[J]. Science of the Total Environment, 2019, 670:1190-1203.
|
[20] |
汪双杰, 陈建兵. 青藏高原多年冻土路基温度场公路空间效应的非线性分析[J]. 岩土工程学报, 2008(10):1544-1549.
|
[21] |
JIN L, WANG S, CHEN J, et al. Study on the height effect of highway embankments in permafrost regions[J]. Cold Regions Science and Technology, 2012, 83-84:122-130.
|
[22] |
CHOU Y, SHENG Y, MA W. Study on the effect of the thermal regime differences in roadbed slopes on their thawing features in permafrost regions of Qinghai-Tibetan Plateau[J]. Cold Regions Science and Technology, 2008, 53(3):334-345.
|
[23] |
CHOU Y, SHENG Y, WEI Z. Evaluation on thermal stability of embankments with different strikes in permafrost regions[J]. Cold Regions Science and Technology, 2009, 58(3):151-157.
|
[24] |
LI D, WU Z, FANG J, et al. Heat stability analysis of embankment on the degrading permafrost district in the east of the Tibetan Plateau, China[J]. Cold Regions Science and Technology, 1998, 28(3):183-188.
|
[25] |
LI J, SHENG Y. Analysis of the thermal stability of an embankment under different pavement types in high temperature permafrost regions[J]. Cold Regions Science and Technology, 2008, 54(2):120-123.
|
[26] |
YU W, YI X, NIU Y, et al. Dynamic thermal regime of permafrost beneath embankment of Qinghai-Tibet highway under the scenarios of changing structure and climate warming[J]. Cold Regions Science and Technology, 2016, 126:76-81.
|
[27] |
HAN F, YU W, YI X, et al. Thermal regime of paved embankment in permafrost regions along the Qinghai-Tibet engineering corridor[J]. Applied Thermal Engineering, 2016, 108:330-338.
|
[28] |
刘海苹, 丁琳, 杨扬, 等. 路基高度对高纬度多年冻土区路基温度场的影响[J].黑龙江大学工程学报, 2017, 8(1):25-29.
|
[29] |
黄俊杰, 苏谦, 钟彪, 等. 多年冻土斜坡路基失稳变形影响因素及特征研究[J]. 岩土力学, 2013, 34(3):703-710.
|
[30] |
田亚护, 张青龙, 穆彦虎, 等. 高温冻土区填土路基的地基融化固结变形分析[J]. 中国铁道科学, 2014, 35(3):1-7.
|
[31] |
马勤国, 赖远明, 吴道勇. 多年冻土区高等级公路路基温度场研究[J]. 中南大学学报(自然科学版), 2016, 47(7):2415-2423.
|
[32] |
汪双杰. 多年冻土区公路路基尺度效应理论与方法[M]. 北京:科学出版社, 2020.
|
[33] |
陈建兵, 刘志云, 金龙. 青藏公路冻土路基最大设计高度研究[J]. 西安科技大学学报, 2012, 32(2):198-203.
|
[34] |
MA T, TANG T, HUANG X, et al. Thermal stability investigation of wide embankment with asphalt pavement for Qinghai-Tibet Expressway based on finite element method[J]. Applied Thermal Engineering, 2017, 115:874-884.
|
[35] |
SONG Y, JIN L, PENG H, et al. Development of thermal and deformation stability of Qinghai-Tibet Highway under sunny-shady slope effect in southern tanglha region in recent decade[J]. Soils and Foundations, 2020, 60(2):342-355.
|
[36] |
俞祁浩, 程国栋, 何乃武,等. 不同路面和幅宽条件下冻土路基传热过程研究[J]. 自然科学进展, 2006(11):1482-1486.
|
[37] |
TAKASHI A, VU T C, AKIO W. Heat storage of pavement and its effect on the lower atmosphere[J]. Atmospheric Environment, 1996, 30(3):413-427.
|
[38] |
ZHANG Z, WU Q, LIU Y, et al. Thermal accumulation mechanism of asphalt pavement in permafrost regions of the Qinghai-Tibet Plateau[J]. Applied Thermal Engineering, 2018, 129:345-353.
|
[39] |
汤涛, 马涛, 黄晓明,等. 青藏高速公路宽幅路基温度场模拟分析[J]. 东南大学学报(自然科学版), 2015, 45(4):799-804.
|
[40] |
YU Q, FAN K, YOU Y, et al. Comparative analysis of temperature variation characteristics of permafrost roadbeds with different widths[J]. Cold Regions Science and Technology, 2015, 117:12-18.
|
[41] |
朱东鹏, 董元宏, 刘戈,等. 宽幅沥青路面热效应对其下部土体热状态的影响[J]. 冰川冻土, 2014, 36(4):845-853.
|
[42] |
田亚护, 房建宏, 沈宇鹏. 多年冻土地区宽幅公路路基稳定性模拟[J]. 中国公路学报, 2015, 28(1):17-23.
|
[43] |
汪双杰, 陈建兵, 金龙, 等. 冻土路基热收支状态的尺度效应[J]. 中国公路学报, 2015, 28(12):9-16.
|
[44] |
张洪伟, 王学营, 赵鑫,等. 内蒙古高纬度地区公路沥青路面水热过程[J]. 长安大学学报:自然科学版, 2021,41(6):10-18.
|
[45] |
LI X, MA W, MU Y, et al. Comparing thermal performances of expressways constructed with an integral embankment and two separated embankments in permafrost zones[J/OL]. Cold Regions Science and Technology, 2020, 170[2023-08-12].https://doi.org/10.1016/j.coldregions.2019.102939.
|
[46] |
LIU Z, CUI F, CHEN J, et al. Study on the permafrost heat transfer mechanism and reasonable interval of separate embankment for the Qinghai-Tibet Expressway[J/OL]. Cold Regions Science and Technology, 2020, 170[2023-08-12].https://doi.org/10.1016/j.coldregions.2019.102952.
|
[47] |
LI X, MA W, MU Y, et al. Wind field and thermal performances of an expressway constructed with two separated crushed-rock embankments in high-altitude permafrost zones[J/OL]. Transportation Geotechnics, 2021, 27[2023-08-12].https://doi.org/10.1016/j.trgeo.2020.100447.
|
[48] |
汪双杰, 王佐, 陈建兵. 青藏高原工程走廊冻土环境与高速公路布局[M]. 上海:上海科学技术出版社, 2017.
|
[49] |
LIU W, YU W, HU D, et al. Crack damage investigation of paved highway embankment in the Tibetan Plateau permafrost environments[J]. Cold Regions Science and Technology, 2019, 163:78-86.
|
[50] |
汪双杰, 陈建兵, 章金钊. 保温护道对冻土路基地温特征的影响[J]. 中国公路学报, 2006(1):12-16,22.
|
[51] |
汪双杰, 陈建兵, 黄晓明. 冻土路基护道地温特征研究[J]. 岩石力学与工程学报, 2006(1):146-151.
|
[52] |
WU Q, ZHANG Z, LIU Y. Long-term thermal effect of asphalt pavement on permafrost under an embankment[J]. Cold Regions Science and Technology, 2010, 60(3):221-229.
|
[53] |
GAO S, WU Q, ZHANG Z, et al. Multiple time scale characteristics of permafrost temperature variations along the Qinghai-Xizang Highway[J]. Quaternary International, 2014, 349:178-186.
|
[54] |
PEI W, JIN L, ZHANG M, et al. Study of the time-dependent thermal behavior of the multilayer asphalt concrete pavement in permafrost regions[J]. Construction and Building Materials, 2018, 193:162-172.
|
[55] |
SUN Z, MA W, WU G L, et al. Permafrost degradation along the Qinghai-Tibet Highway from 1995 to 2020[J]. Advances in Climate Change Research, 2023, 14(2):248-254.
|
[56] |
WANG S, XIONG L, ZHANG C, et al. An optimization model of a highway route scheme in permafrost regions[J]. Cold Regions Science and Technology, 2017, 138:84-90.
|
[57] |
WANG S, JIN L, MU K, et al. The temporal effect of distress developments of frozen embankments in the permafrost regions along the Qinghai-Tibet Highway[J/OL]. Journal of Testing and Evaluation, 2019, 47(4)[2023-08-12].https://doi.org/10.1520/JTE20170487.
|
[58] |
MA W, SHI C, WU Q, et al. Monitoring study on technology of the cooling roadbed in permafrost region of Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2006, 44(1):1-11.
|
[59] |
章金钊,霍明,陈建兵. 多年冻土地区公路路基稳定性技术问题与对策[M]. 北京:人民交通出版社, 2008.
|
[60] |
盛煜,张鲁新,杨成松,等. 保温处理措施在多年冻土区道路工程中的应用[J]. 冰川冻土, 2002,24(5):618-622.
|
[61] |
WEN Z, SHENG Y, MA W, et al. Evaluation of EPS application to embankment of Qinghai-Tibetan Railway[J]. Cold Regions Science & Technology, 2005, 41(3):235-247.
|
[62] |
温智,盛煜,马巍,等. 保温法保护多年冻土的长期效果分析[J]. 冰川冻土, 2006,28(5):760-765.
|
[63] |
赵丽萍. XPS板在冻土路基工程中的应用研究[D]. 西安:长安大学, 2009.
|
[64] |
刘戈, 王双杰, 金龙,等.多年冻土区热棒路基应用效果[J]. 交通运输工程学报, 2016,16(4):59-67.
|
[65] |
YU F, ZHANG M, LAI Y, et al. Crack formation of a highway embankment installed with two-phase closed thermosyphons in permafrost regions:field experiment and geothermal modelling[J]. Applied Thermal Engineering, 2017, 115:670-681.
|
[66] |
米维军, 王小军, 武小鹏. 关于青藏铁路热棒路基稳定性的探讨. 路基工程, 2010(2):129-131.
|
[67] |
WANG S, JIN L, PENG H, ET AL. Damage analysis of the characteristics and development process of thermosyphon embankment along the Qinghai-Tibet Highway[J]. Cold Regions Science & Technology, 2017, 142:118-131.
|
[68] |
邰博文, 多年冻土区高速公路特殊路基结构变形机理及服役性能研究[D]. 北京:北京交通大学, 2018.
|
[69] |
喻文兵, 赖远明, 张学富, 等. 块石层与碎石层降温效果室内试验研究[J]. 冰川冻土, 2003,25(6):638-643.
|
[70] |
YU W, LAI Y, ZHANG X, et al. Laboratory investigation on cooling effect of coarse rock layer and fine rock layer in permafrost regions[J]. Cold Regions Science & Technology, 2004, 38(2-3):229-238.
|
[71] |
叶学民. 多年冻土块石通风路基温度场数值模拟与分析[D]. 西安:长安大学, 2005.
|
[72] |
朱东鹏, 贾志裕, 赵永国. 青藏公路多年冻土区片、块石路基试验工程及应用研究[J]. 公路, 2008(9):332-337.
|
[73] |
ZHOU Y,ZHANG M, PEI W, et al. Thermal-deformation behavior of a crushed-rock embankment along a high-grade highway in permafrost regions[J/OL]. Energy, 2023,283[2023-08-12]. https://doi.org/10.1016/j.energy.2023.128564.
|
[74] |
牛富俊, 程国栋, 赖远明. 青藏铁路通风路堤室内模型试验研究[J]. 西安工程学院学报, 2002,24(3):1-6.
|
[75] |
NIU F, CHENG G, XIA H, et al. Field experiment study on effects of duct-ventilated railway embankment on protecting the underlying permafrost[J]. Cold Regions Science & Technology, 2006, 45(3):178-192.
|
[76] |
NIU F, LIU X, MA W, et al. Monitoring study on the boundary thermal conditions of duct-ventilated embankment in permafrost regions[J]. Cold Regions Science & Technology, 2008, 53(3):305-316.
|
[77] |
朱东鹏, 袁堃, 陈建兵, 等. 高温多年冻土区公路通风管路基传热特征分析[J]. 中国公路学报, 2015,28(12):70-77.
|
[78] |
董元宏, 赖远明, 陈武. 多年冻土区宽幅公路路基降温效果研究:一种L型热管-块碎石护坡复合路基[J]. 岩土工程学报, 2012, 34(6):1043-1049.
|
[79] |
LUO X, YU Q, MA Q, et al. Evaluation on the stability of expressway embankment combined with L-shaped thermosyphons and insulation boards in warm and ice-rich permafrost regions[J/OL]. Transportation Geotechnics, 2021,30[2023-08-12].https://doi.org/10.1016/j.trgeo.2021.100633.
|
[80] |
刘戈, 汪双杰, 孙红, 等. 透壁式通风管-块石复合路基降温效果模型试验及数值模拟[J]. 岩石工程学报, 2015, 37(2):284-291.
|
[81] |
刘戈, 汪双杰, 汪晶, 等. 多年冻土区高速公路路基新结构工程示范要就[J]. 灾害学, 2015(34):8-13.
|
[82] |
ZHANG M, ZHANG X, LI S, et al. Evaluating the cooling performance of crushedrock interlayer embankments with unperforated and perforated ventilation ducts in permafrost regions[J]. Energy, 2015,93:870-881.
|
[83] |
汪双杰,金龙,穆柯,等. 高原冻土区公路路基病害及工程对策[J]. 中国工程科学, 2017,19(6):140-146.
|
[84] |
汪双杰, 陈建兵, 王佐. 高海拔高寒地区高速公路建设技术[M]. 上海:上海科学技术出版社, 2017.
|