Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Zhenling, QIN Siyuan. Study on Horizontal Load-Bearing and Deformation Performances of Monopile Foundations for Offshore Wind Turbines Based on In-Situ Static Load Tests[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 13-18. doi: 10.13204/j.gyjzG22122304
Citation: LI Zhenling, QIN Siyuan. Study on Horizontal Load-Bearing and Deformation Performances of Monopile Foundations for Offshore Wind Turbines Based on In-Situ Static Load Tests[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 13-18. doi: 10.13204/j.gyjzG22122304

Study on Horizontal Load-Bearing and Deformation Performances of Monopile Foundations for Offshore Wind Turbines Based on In-Situ Static Load Tests

doi: 10.13204/j.gyjzG22122304
  • Received Date: 2022-12-23
    Available Online: 2023-08-18
  • The horizontal bearing capacity and deformation characteristics for monopile foundations of offshore wind turbines directly influenced the stability and safety of the whole structure and wind turbine operation. In order to study the horizontal bearing capacity and deformation characteristics of monopile foundations, finite element numerical simulations were used to analyze the pile-soil contact model, soil parameters and variable characteristics of horizontal displacement and bending moment of piles based on the in-situ static load tests of single piles. Moreover, the method of the p-y curve recommended by the specification of API RP 2A-WSD was applied to compare the numerical simulation results with that from in-situ tests. It indicated that the simulation results were in good agreement with the measured data from in-situ tests at different load levels. The errors between the horizontal displacement of piles by the p-y curve method and in-situ tests increased with the increase of horizontal loads, which indicated that the p-y curve method was conservative. With the increase of horizontal loads, the horizontal deformation of piles gradually increased, the maximum bending moment points tended to move down, and the reverse bending point was about 14 m to16 m below the mud surface. The deformation and plastic zone of foundation soil gradually extended from the surface to the deep. Therefore, the model of pile-soil interfaces and the selection of geotechnical parameters were basically reasonable, and the rationality and effectiveness of finite element numerical simulations were verified.
  • [1]
    王国粹, 王伟, 杨敏. 3.6 MW海上风机单桩基础设计与分析[J]. 岩土工程学报, 2011, 33(增刊2): 95-100.
    [2]
    武亚军, 卢晨阳, 李卫超, 等. 应用于海洋工程中水平受荷桩特性分析的修正p-y曲线模型[J]. 大连理工大学学报, 2018, 58(5): 511-518.
    [3]
    YAN S, ZHOU Q, LIU R, et al. Pit bearing capacity effect on status of soil plug during pile driving in ocean engineering[J]. China Ocean Engineering, 2011, 25(2): 295-304.
    [4]
    王卫, 闫俊义, 刘建平. 基于海上风电试桩数据的大直径桩p-y模型研究[J]. 岩土工程学报, 2021, 43(6): 1131-1138.
    [5]
    American Petroleum Institute. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design: RP 2A-WSD [S]. Washington D.C.: American Petroleum Institute, 2010.
    [6]
    MCADAM R A, BYRNE B W, HOULSBY G T, et al. Monotonic laterally loaded pile testing in a dense marine sand at Dunkirk[J]. Geotechnique, 2019, 70(11): 1-34.
    [7]
    CHOO Y W, KIM D. Experimental development of the p-y relationship for large-diameter offshore monopiles in sands: centrifuge tests[J/OL]. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 142(1) [2022-12-23]. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001373.
    [8]
    孙希, 黄维平. 基于实测数据的海上风电大直径桩p-y曲线研究[J]. 太阳能学报, 2016, 37(1): 216-221.
    [9]
    LI W, ZHU B, YANG M. Static response of monopile to lateral load in over-consolidated dense sand[J/OL]. Journal of Geotechnical & Geoenvironmental Engineering, 2017, 143(7) [2022-12-23]. https://doi.org/10.1061/(ASCE)GT.1943.
    [10]
    朱斌, 杨永垚, 余振刚, 等. 海洋高桩基础水平单调及循环加载现场试验[J]. 岩土工程学报, 2012, 34(6): 1028-1037.
    [11]
    骆光杰, 周茂强, 张强, 等.基于FLAC3D的海上风电大直径钢管桩基础竖向承载力数值模拟研究[J]. 水力发电, 2021, 47(1): 117-121.
    [12]
    刘述丽, 易神州, 张昆. 海上大直径钢管桩水平向桩土界面参数试桩分析[J]. 水利水电技术, 2018, 49(5): 205-212.
    [13]
    明敏. 海上风电单桩基础水平承载力影响参数不确定性研究[D]. 武汉: 华中科技大学, 2019.
    [14]
    徐海滨, 吕鹏远, 杜修力. 基于现场试验的海上风电大直径单桩三维水平承载力研究[J]. 水利水电技术, 2020, 51(7): 154-160.
    [15]
    Det Norske Veritas (DNV). Design of offshore wind turbine structures: DNV-OS-J01[S]. Oslo: Det Norske Veritas, 2014.
    [16]
    DS Simulia. ABAQUS 2019 help documentation[Z]. Johnston:Dassault Systems Smulia Corp, 2019.
    [17]
    高大钊, 袁聚云. 土质学与土力学[M]. 3版.北京: 人民交通出版社, 2006.
    [18]
    杨敏, 赵锡宏. 分层土中的单桩分析法[J]. 同济大学学报, 1992, 20(4): 421-428.
  • Relative Articles

    [1]ZHOU Zhijun, TIAN Yeqing, ZHANG Mingyi, WANG Kangchao, ZHU Shanshan. Analysis on Bearing Characteristics of Pile Groups with Post-Grouting at Pile Ends in Loess Areas[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 182-190. doi: 10.3724/j.gyjzG22090209
    [2]ZHOU Xuhong, LUO Yintao, WANG Wenling, WANG Yuhang, LU Yao. Optimizational Analysis on Structural Parameters and Study on Practical Deformation Analysis Methods for High-Rise Pile Cap Foundations of Offshore Wind Turbines[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 1-12. doi: 10.13204/j.gyjzG23022210
    [3]ZHANG Xu. Ultimate Bearing Characteristics and Envelope Analysis of the Composite Caisson Foundation with a Single Pile in Combined Loading Modes[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 187-193. doi: 10.13204/j.gyjzG21022506
    [4]YANG Bai, XIAO Shiguo, MA Jianlin, LIU Baochen, SU Chunhui. FIELD TEST STUDY ON UPLIFT BEARING CHARACTERISTICS OF CONCRETE BELLED PILES IN SANDSTONE STRATA[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 132-138,147. doi: 10.13204/j.gyjzG20040902
    [5]SHENG Jinma, HAN Chengyong, YIN Xuechao. FIELD TESTS ON BEARING CHARACTERISTICS OF LATERALLY LOADED COMPOSITE CAISSONS IN SOFT FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 142-146,152. doi: 10.13204/j.gyjzG20040811
    [6]HUO Shaolei, ZHU Mingxing, GONG Weiming, DAI Guoliang. FIELD TESTS OF LARGE DIAMETER PILES SUBJECTED TO LATERAL LOADS IN DEEP SOFT SOILS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 139-144. doi: 10.13204/j.gyjzG20070215
    [7]LI Shu'an, ZHANG Junhua, TIAN Shizhen, WU Jianqun, CHANG Jingcheng, WANG Yukui. RESEARCH ON BEARING CHARACTERISTICS OF GROUP PILE FOUNDATIONS CONSIDERING PILE-SOIL-CAP INTERACTION IN STRATIFIED SOIL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 65-71. doi: 10.13204/j.gyjzG201908210002
    [8]LüFanren, Shao Hongcai, Jin Yaohua. EXPERIMENTAL STUDY ON BEARING CAPACITY COMPARISON BETWEEN SYMMETRIC DOUBLE GROUP PILES UNDER VERTICAL LOAD[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 102-105. doi: 10.13204/j.gyjz2011205019
    [9]Zhan Yungang. NUMERICAL ANALYSIS FOR BEARING CAPACITY OF SUCTION CAISSON FOUNDATION SUBJECT TO V-H-T LOADING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(10): 76-81. doi: 10.13204/j.gyjz201010017
    [10]Yang Qingguang, Zhang Keneng, Liu Jie. EXPERIMENT ON BEARING CHARACTERISTICS OF LONG-SHORT CEMENT-SOIL PILES COMPOSITE FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(3): 72-74105. doi: 10.13204/j.gyjz200803020
    [11]Lei Huayang, Li Hongqi, Wan Zirui, Liu Hongjun, Ye Jinshui, Wang Pei. ANALYSIS AND FIELD TEST OF THE DEFORMATION CHARACTERISTIC OF CONSTRUCTION WASTE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(1): 34-36. doi: 10.13204/j.gyjz200601011
  • Cited by

    Periodical cited type(1)

    1. 钟庆华,李有为,孙婉静,谢德宽,肖苡辀. 跨海高速铁路桥梁超长钢管桩锤击沉桩机理探究. 交通科技. 2024(06): 50-55 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.2 %FULLTEXT: 5.2 %META: 88.6 %META: 88.6 %PDF: 6.2 %PDF: 6.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.0 %其他: 10.0 %上海: 2.9 %上海: 2.9 %东莞: 4.3 %东莞: 4.3 %佛山: 0.5 %佛山: 0.5 %北京: 9.5 %北京: 9.5 %南京: 5.2 %南京: 5.2 %南宁: 1.0 %南宁: 1.0 %南阳: 1.0 %南阳: 1.0 %合肥: 1.0 %合肥: 1.0 %大连: 0.5 %大连: 0.5 %天津: 2.4 %天津: 2.4 %宁波: 1.0 %宁波: 1.0 %宜春: 0.5 %宜春: 0.5 %宣城: 0.5 %宣城: 0.5 %常德: 1.9 %常德: 1.9 %广州: 2.4 %广州: 2.4 %廊坊: 0.5 %廊坊: 0.5 %延安: 2.4 %延安: 2.4 %徐州: 0.5 %徐州: 0.5 %德州: 0.5 %德州: 0.5 %成都: 2.4 %成都: 2.4 %攀枝花: 2.4 %攀枝花: 2.4 %昆明: 1.4 %昆明: 1.4 %晋城: 0.5 %晋城: 0.5 %杭州: 2.9 %杭州: 2.9 %武汉: 2.4 %武汉: 2.4 %江门: 0.5 %江门: 0.5 %洛阳: 1.0 %洛阳: 1.0 %济南: 1.0 %济南: 1.0 %深圳: 1.0 %深圳: 1.0 %温州: 0.5 %温州: 0.5 %漯河: 1.4 %漯河: 1.4 %秦皇岛: 0.5 %秦皇岛: 0.5 %绵阳: 0.5 %绵阳: 0.5 %芒廷维尤: 15.7 %芒廷维尤: 15.7 %芝加哥: 0.5 %芝加哥: 0.5 %西宁: 4.8 %西宁: 4.8 %西安: 1.4 %西安: 1.4 %贵阳: 2.4 %贵阳: 2.4 %赤峰: 0.5 %赤峰: 0.5 %运城: 3.8 %运城: 3.8 %郑州: 1.4 %郑州: 1.4 %鄂州: 1.4 %鄂州: 1.4 %重庆: 1.0 %重庆: 1.0 %长春: 1.0 %长春: 1.0 %其他上海东莞佛山北京南京南宁南阳合肥大连天津宁波宜春宣城常德广州廊坊延安徐州德州成都攀枝花昆明晋城杭州武汉江门洛阳济南深圳温州漯河秦皇岛绵阳芒廷维尤芝加哥西宁西安贵阳赤峰运城郑州鄂州重庆长春

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (185) PDF downloads(13) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return