Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SUN Kai, LI Bo, KOU Beibei, MI Yuqi, LI Jing, LI Bin, MA Huihuan. Analysis on the Vertical Bearing Capacity of Anchorage Foundations with Wellhead Suction Anchors Based on CEL Method[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 25-30. doi: 10.13204/j.gyjzG22071601
Citation: SUN Kai, LI Bo, KOU Beibei, MI Yuqi, LI Jing, LI Bin, MA Huihuan. Analysis on the Vertical Bearing Capacity of Anchorage Foundations with Wellhead Suction Anchors Based on CEL Method[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 25-30. doi: 10.13204/j.gyjzG22071601

Analysis on the Vertical Bearing Capacity of Anchorage Foundations with Wellhead Suction Anchors Based on CEL Method

doi: 10.13204/j.gyjzG22071601
  • Received Date: 2022-07-16
    Available Online: 2023-08-18
  • The wellhead suction anchor has been first used in the second round of trial production tests for natural gas hydrates in China. Be directed against anchorage foundations with wellheed suction anchors, the mechanism of the foundation under vertical loads was studied. The three-dimensional model of the foundation was constructed by finite element software, and the coupled Euler-Lagrangian (CEL) method was used to simulate the vertical large-deformation process of the foundation. The validity of the CEL method for analyzing the ultimate bearing capacity of the wellhead suction anchor was verified by comparing the numerical analysis results with the theoretical calculation results. By comparing between the characteristics of vertical displacement-load curves of traditional suction anchors and wellhead suction anchors, it was found that the side wall serionsly confined the soil plug inside wellhead suction anchors, and its vertical ultimate bearing capacity was higher. The model coupled the Euler-Lagrangian method provided reference to the optimal design of anchorage foundations with wellhead suction anchors.
  • [1]
    吴时国, 王吉亮. 南海神狐海域天然气水合物试采成功后的思考[J]. 科学通报, 2018, 63(1): 2-8.
    [2]
    叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3): 557-568.
    [3]
    LI B, KOU B B, LI B, et al. Application of wellhead suction anchor technology in the second production test of natural gas hydrates in the South China Sea [J]. China Geology, 2022, 5(2): 293-299.
    [4]
    钻探工程编辑部. 深海井口吸力锚[J]. 钻探工程, 2022, 49(1): 161.
    [5]
    秦源康, 刘康, 陈国明, 等. 海洋水合物地层导管吸力锚贯入安装负压窗口分析[J]. 石油钻采工艺, 2021, 43(6): 737-743.
    [6]
    刘书杰, 黄熠, 刘和兴, 等. 深水吸力桩建井过程及承载力特性的试验研究[J]. 石油机械, 2022, 50(3): 32-41.
    [7]
    GOURVENEC S, BARNET S. Undrained failure envelope for skirted foundations under general loading [J]. Geotechnique, 2011, 61(3): 263-270.
    [8]
    武科, 栾茂田, 范庆来, 等. 倾斜荷载作用下桶形基础承载力特性研究[J]. 岩土力学, 2009, 30(4): 1095-1101.
    [9]
    张宇, 王梅, 楼志刚. 竖向载荷作用下桶形基础与土相互作用机理研究[J]. 土木工程学报, 2005(2): 97-101.
    [10]
    李大勇, 黄婷, 翟汉波. 竖向荷载作用下砂土中裙式吸力基础承载特性[J]. 四川大学学报(工程科学版), 2015, 47(5): 10-16.
    [11]
    张金来, 鲁晓兵, 王淑云, 等. 桶形基础极限承载力特性研究[J]. 岩石力学与工程学报, 2005(7): 1169-1172.
    [12]
    詹云刚. 水平-竖向-扭转荷载下吸力沉箱基础承载特性数值研究[J]. 工业建筑, 2010, 40(10): 76-81.
    [13]
    闫澍旺, 霍知亮, 孙立强,等. 海上风电机组筒型基础工作及承载特性研究[J]. 岩土力学, 2013, 34(7): 2036-2042.
    [14]
    郭睿. 含吸力锚井口装置的力学行为分析[D]. 北京:中国石油大学(北京), 2019.
    [15]
    American Petroleum Institute (API). Geotechnical and Foundation Design Considerations:ANSI/API Recommended Practice 2GEO [S]. Washington D. C.: American Petroleum Institute, 2014.
    [16]
    KARLSRUD K, CLAUSEN C, AAS P M. Bearing capacity of driven piles in clay, the NGI approach [C]//Proceedings of International Symposium on Frontiers in Offshore Geotechnics. 2005: 775-782.
    [17]
    CLAUSEN C, AAS P M, KARLSRUD K. Bearing capacity of driven piles in sand, the NGI approach [C]//Proceedings of International Symposium on Frontiers in Offshore Geotechnics. 2005: 574-580.
    [18]
    JARDINE R, CHOW F, OVERY R, et al. ICP Design Methods for Driven Piles in Sands and Clays [M]. London: Thomas Telford, 2005.
    [19]
    LEHANE B M, LI Y N, WILLIAMS R. Shaft capacity of displacement piles in clay using the cone penetration test [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 253-266.
    [20]
    居俊, 杜广印. 基于孔压静力触探测试的刚性桩承载力非线性计算方法[J]. 工业建筑, 2018, 48(5):122-126.
    [21]
    王磊, 俞峰, 王子郡. 黏性土中钢管桩承载力的静力触探设计方法[J]. 工业建筑, 2021, 51(10): 163-169.
    [22]
    LI Y L, HU G W, WU N Y, et al. Undrained shear strength evaluation for hydrate-bearing sediment overlying strata in the Shenhu area, northern South China Sea [J]. Acta Oceanologica Sinica, 2019, 38(3): 114-123.
    [23]
    刘永刚. 海上风力发电复合筒型基础承载特性研究[D]. 天津:天津大学, 2014.
  • Relative Articles

    [1]ZANG Yan, FAN Qinglai, YU Sen, XIAO Guofeng, YIN Ruiying. Experimental Study on Pull-Out Resistance Properties of Suction Anchors in Sandy Soil[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(4): 125-131. doi: 10.3724/j.gyjzG23032202
    [2]YAN Lixing, CHEN Chong, KONG Dechao, GUO Zongkai, XIONG Yan. Experimental Study and Numerical Simulation on the Tensile Bearing Capacity of Bolt-Sphere Joints After Chloride Corrosion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 147-152. doi: 10.3724/j.gyjzG22081013
    [3]NIE Jin, XING Kuntao, YANG Jianping. Research on Tensile Capacity of Tensile Members of Double Angle with Local Deformation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 101-106. doi: 10.13204/j.gyjzG20010903
    [7]Liu Junwei, Zhao Chen, Xie jian, Yu Xiuxia. SIMULATION COMPUTATION OF COMPACTION EFFECT FOR OPEN-ENDED PIPE PILE BASED ON PLUGGING EFFECT[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 77-82. doi: 10.13204/j.gyjz201402018
    [8]Pang Naiyong, Jia Yingjie, Xia Lei. ANALYSIS OF FACTORS INFLUENCING PERFORMANCE OF FRAME-SUPPORTED MULTI-RIBBED WALL BEAM UNDER VERTICAL LOAD[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(2): 54-57. doi: 10.13204/j.gyjz201202012
    [9]LüFanren, Shao Hongcai, Jin Yaohua. EXPERIMENTAL STUDY ON BEARING CAPACITY COMPARISON BETWEEN SYMMETRIC DOUBLE GROUP PILES UNDER VERTICAL LOAD[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 102-105. doi: 10.13204/j.gyjz2011205019
    [10]Chen Lanyun, Shu Zhong, Yi Nangai. NUMERICAL SIMULATION OF VERTICAL BEARING CAPACITY OF POST-GROUTING BORED PILES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 78-81. doi: 10.13204/j.gyjz201107018
    [11]Liu Xiang, Wu Yongbo. EXPERIMENT AND SIMULATION ANALYSIS OF BEARING CAPACITY OF CONCRETE-FILLED RECTANGULAR STEEL TUBE BEAM[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(7): 91-94,104. doi: 10.13204/j.gyjz201007023
    [12]LüFan-ren, Chen Yun-min, Yin Ji-ming. ANALYSIS OF VERTICAL LOAD CAPACITY OF BENT PILE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 59-64. doi: 10.13204/j.gyjz200605017
    [13]Liu Qijian, Yang Linde. ANALYSIS OF VERTICAL BEARING CAPACITY AND DISPLACEMENT BY THE SETTLEMENT OF PILE TOP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 35-37. doi: 10.13204/j.gyjz200503014
    [14]Xu Changjie, Zhang Zhengwei. NUMERICAL ANALYSIS OF THE LARGE DEFORMATION THEORY DURING DYNAMIC CONSOLIDATION ON SOILS BY THICK FILL[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 48-51,14. doi: 10.13204/j.gyjz200406016
  • Cited by

    Periodical cited type(3)

    1. 曹先凡,王姝媛,王琮,张爱霞,姚志广. 水下管汇入水冲击数值模拟研究. 石油工程建设. 2024(01): 21-24 .
    2. 李建波,刘佳,李志远,林皋. 核电工程异形水箱流固耦合分布式参数模型与效用研究. 振动与冲击. 2024(08): 43-51+77 .
    3. 陈志冰. 深水漂浮式风机新型加肋吸力锚在位承载力分析. 电力勘测设计. 2024(10): 47-51 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-070102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.8 %FULLTEXT: 10.8 %META: 88.1 %META: 88.1 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 28.2 %其他: 28.2 %上海: 0.6 %上海: 0.6 %东莞: 2.6 %东莞: 2.6 %伊利诺伊州: 0.3 %伊利诺伊州: 0.3 %佛山: 0.3 %佛山: 0.3 %北京: 3.5 %北京: 3.5 %十堰: 0.3 %十堰: 0.3 %南京: 0.6 %南京: 0.6 %南通: 0.3 %南通: 0.3 %台州: 0.6 %台州: 0.6 %合肥: 0.6 %合肥: 0.6 %呼伦贝尔: 0.3 %呼伦贝尔: 0.3 %嘉兴: 1.2 %嘉兴: 1.2 %大连: 0.6 %大连: 0.6 %天津: 1.5 %天津: 1.5 %宁波: 0.3 %宁波: 0.3 %宜昌: 0.3 %宜昌: 0.3 %宜春: 0.3 %宜春: 0.3 %宿州: 0.6 %宿州: 0.6 %常德: 1.7 %常德: 1.7 %广安: 0.6 %广安: 0.6 %广州: 2.9 %广州: 2.9 %张家口: 3.8 %张家口: 3.8 %成都: 0.3 %成都: 0.3 %扬州: 0.3 %扬州: 0.3 %攀枝花: 0.9 %攀枝花: 0.9 %昆明: 0.6 %昆明: 0.6 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.2 %杭州: 1.2 %桂林: 0.3 %桂林: 0.3 %武汉: 0.9 %武汉: 0.9 %沈阳: 0.3 %沈阳: 0.3 %法兰克福: 0.3 %法兰克福: 0.3 %海口: 2.0 %海口: 2.0 %温州: 0.3 %温州: 0.3 %漯河: 2.6 %漯河: 2.6 %濮阳: 0.3 %濮阳: 0.3 %珀斯: 0.9 %珀斯: 0.9 %石家庄: 0.6 %石家庄: 0.6 %秦皇岛: 0.3 %秦皇岛: 0.3 %芒廷维尤: 18.3 %芒廷维尤: 18.3 %芝加哥: 0.3 %芝加哥: 0.3 %西宁: 9.0 %西宁: 9.0 %西安: 0.3 %西安: 0.3 %贵阳: 1.2 %贵阳: 1.2 %赤峰: 0.3 %赤峰: 0.3 %运城: 2.0 %运城: 2.0 %郑州: 1.7 %郑州: 1.7 %重庆: 1.2 %重庆: 1.2 %长沙: 1.2 %长沙: 1.2 %青岛: 0.3 %青岛: 0.3 %其他上海东莞伊利诺伊州佛山北京十堰南京南通台州合肥呼伦贝尔嘉兴大连天津宁波宜昌宜春宿州常德广安广州张家口成都扬州攀枝花昆明晋城朝阳杭州桂林武汉沈阳法兰克福海口温州漯河濮阳珀斯石家庄秦皇岛芒廷维尤芝加哥西宁西安贵阳赤峰运城郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (301) PDF downloads(3) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return