Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHU Xinrong, QIU Yang, YANG Wen, YANG Xuan, LIU Jiaping. FIELD TESTING OF HEAT FLUX AND HEAT EXCHANGE COEFFICIENTS ON BUILDING EXTERIOR SURFACE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(7): 83-87,150. doi: 10.13204/j.gyjzG19113009
Citation: ZHU Xinrong, QIU Yang, YANG Wen, YANG Xuan, LIU Jiaping. FIELD TESTING OF HEAT FLUX AND HEAT EXCHANGE COEFFICIENTS ON BUILDING EXTERIOR SURFACE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(7): 83-87,150. doi: 10.13204/j.gyjzG19113009

FIELD TESTING OF HEAT FLUX AND HEAT EXCHANGE COEFFICIENTS ON BUILDING EXTERIOR SURFACE

doi: 10.13204/j.gyjzG19113009
  • Received Date: 2019-11-30
  • Publish Date: 2020-10-17
  • Heat transfer coefficient of building surface is an important parameter for building thermal engineering, energy saving and energy consumption simulation. In order to investigate the dynamic changes of heat flow and heat transfer coefficient on the actual building surface, to improve the accuracy of building energy consumption simulation, and to provide basic parameter data for codes and standards, the direct heat balance method was adopted in this study. Field tests were carried out on the external walls of an office building in Xi'an, the convection/radiation and total heat flux of the external walls were obtained. On the basis of experiment, the convection heat transfer coefficient(CHTC), the radiation heat transfer coefficient(RHTC), and total heat transfer coefficient of the surface were obtained. The results indicated that the radiation and convection heat transfer coefficients of the external walls changed from 1.59 to 29.18 W/(m2·K) and 0.14 to 7.56 W/(m2·K), respectively. The radiation heat flux of the external walls accounted for 85% during the daylight and 50% during the night of the total heat flux. For the natural wind with low wind speed, the value of maximum frequency was suggested to be used as the design value.
  • 张泠,汤广发,陈友明,等.一种测定建筑墙体外表面换热系数的实验方法[J].湖南大学学报(自然科学版),2001(3):102-107.
    刘艳峰,刘加平.建筑外壁面换热系数分析[J].西安建筑科技大学学报(自然科学版),2008(3):407-412.
    中华人民共和国城乡和住房建设部. 民用建筑热工设计规范:GB 50176-2016[S].北京:中国建筑工业出版社,2016.
    王烨,王良璧,胡文婷,等.建筑外壁面换热系数对室内自然对流传热影响[J].哈尔滨工程大学学报,2015,36(9):1206-1211.
    MIRSADEGHI M, CóSTOLA D, BLOCKEN B, et al. Review of External Convective Heat Transfer Coefficient Models in Building Energy Simulation Programs:Implementation and Uncertainty[J]. Applied Thermal Engineering,2013,56(1/2):134-151.
    DEFRAEYE T,BLOCKEN B,CARMELIET J. Convective Heat Transfer Coefficients for Exterior Building Surfaces:Existing Correlations and CFD Modelling[J]. Energy Conversion and Management,2010,52(1):512-522.
    张建荣,刘照球.混凝土对流换热系数的风洞实验研究[J].土木工程学报,2006(9):39-42,61.
    徐佳佳,史献林,王向转.民用飞机风挡表面对流换热系数的校核[J].民用飞机设计与研究,2015(1):87-90,108.
    JUBAYER C M, SIDDIQUI K, HANGAN H. CFD Analysis of Convective Heat Transfer from Ground Mounted Solar Panels[J]. Solar Energy,2016(133):556-566.
    GAO S, OOKA R, OH W. Formulation of Human Body Heat Transfer Coefficient Under Various Ambient Temperature, Air Speed and Direction Based on Experiments and CFD[J]. Building and Environment,2019(160):106168.https://doi.org/10.1016/j.buildenv.2019.106168.
    邵建涛,刘京,赵加宁,等.建筑水平屋面对流换热特性的实验研究[J].华南理工大学学报(自然科学版),2008(3):134-139.
    XIE J C, CUI Y P, LIU J P, et al. Study on convective heat transfer coefficient on vertical external surface of island-reef building based on naphthalene sublimation method[J]. Energy and Buildings, 2018(158):300-309.
    陈默,谢静超,姬颖,等.高温、强辐射条件下萘升华法测量对流换热系数的适用性研究[J].建筑科学,2019,35(12):62-68.
    HAGISHIMA A, TANIMOTO J, NARITA K. Intercomparisons of experimental convective heat transfer coefficients and mass transfer coefficients of urban surfaces[J]. Boundary-Layer Meteorology. 2005, 117(3):551-576.
    YANG W, ZHU X, LIU J. Annual Experimental Research on Convective Heat Transfer Coefficient of Exterior Surface of Building External Wall[J]. Energy & Buildings, 2017, 155.
    MCADAMS W H, Heat Transmission McGraw-Hill Kogakusha[M]. Tokyo, Japan, 1954.
    Chartered Institute of Building Services (CIBS). Guide Book A:Section A3[M]. London:1979.
    ASHRAE Task Group. Procedure for Determining Heating and Cooling Loads for Computerising Energy Calculations. Algorithms for Building Heat Transfer Subroutines[M]. New York:1975.
    ITO N, KIMURA K, OKA J. A Field Experiment Study on the Convective Heat Transfer Coefficient on the Exterior Surface of a Building[J]. ASHRAE Transactions, 1972, 78:184.
    HAGISHIMA A, TANIMOTO J.Field Measurements for Estimating the Convective Heat Transfer Coefficient at Building Surfaces[J]. Building and Environment,2003,38:873-881.
    曹梅,杨珍,王斌.西安城区与郊区风向风速差异分析[J].陕西气象,2016(2):19-23.
    王雯燕,曹红丽,张颖梅,等.西安雾区垂直结构气象要素特征分析[J].甘肃科学学报,2014,26(3):32-34.
  • Relative Articles

    [1]REN Jinlong, RONG Muning, XING Yunlin, ZHENG Ming, NIE Xin, FAN Jiansheng, LIU Yufei. Micro Vibration Test and Analysis in Experiment Hall of Beijing High Energy Photon Source Facility Induced by Artificial Frequency Sweep Excitation[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 61-67. doi: 10.3724/j.gyjzG23022008
    [2]ZHANG Rong, WANG Bin. Field Tests and Numerical Simulations on Dynamic Characteristics of Loess Slopes[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 169-176. doi: 10.13204/j.gyjzG21122715
    [3]LIU Yan, ZHANG Moyan, CAO Qimeng, RUI Xin, GUO Xiangfei, YANG Liu. RESEARCH ON TOTAL DAILY SOLAR RADIATION IN THE MIDDLE AND LOW DENSITY BLOCK[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(7): 151-158. doi: 10.13204/j.gyjzG19112911
    [4]Wang Rui, Guo Zhaosheng, Cui Juanling. THE SPOT TESTING AND FEA OF THE VIBRATION BEHAVIOR OF BEAM-PLATES SYSTEM CAUSED BY THE VIBRATION OF FLUIDIZED BED DRYER[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(09): 62-67.
    [5]Li Limin. APPLICATION STUDY ON BENCH METHOD WITH LARGE ARCH SPRINGING OF RAPID TRANSIT RAILWAY SHALLOW BURIED TUNNEL[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(1): 90-93. doi: 10.13204/j.gyjz201301020
    [6]Che Jialing, Hu Changming, Jiang Ming. DESIGN AND FIELD MEASUREMENT ANALYSIS FOR FORMWORK OF AXIS ROTATING STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(1): 85-89,79. doi: 10.13204/j.gyjz201301019
    [7]Li En, Liu Jiaping, Yang Liu. RESEARCH ON THE PASSIVE DESIGN OPTIMIZATION OF DIRECT SOLAR GAIN HOUSE FOR RESIDENTIAL BUILDINGS IN LHASA[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(2): 27-32,77. doi: 10.13204/j.gyjz201202007
    [8]Jiang Feng, Fang Jia, Chen Ziyi, Wang Yu, Zhang Bo. THE IMPACT DRILLING EFFECT ON THE SURROUNDING BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(3): 88-92,116. doi: 10.13204/j.gyjz201203019
    [9]Zhang Heng, Chen Shougen, Cheng Fanghui. RESEARCH ON LINING MECHANICAL BEHAVIOUR OF TWIN TUNNELS WITH A BIG SPAN AND A SMALL SEPARATION BY FIELD TEST[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(12): 53-57,103. doi: 10.13204/j.gyjz201212012
    [10]Qiang Xiaojun, Zhang Changsheng, Liu Feng. FIELD TEST AND ANALYSIS OF REINFORCED PILE- SUPPORTED FOUNDATION IN LARGE AREA OF SOFT GROUND[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 95-98. doi: 10.13204/j.gyjz201204020
    [11]Zhou Jian, Zhang Junzhi, Zhou Jianmin. STUDY ON CHECK EXPERIMENT OF MEASUREMENT METHODS FOR CHLORIDE DIFFUSION COEFFICIENT OF CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(2): 109-111,119. doi: 10.13204/j.gyjz201002025
    [12]Cai Jiangdong, Jiang Zhenquan. EXPERIMENTAL ANALYSIS OF THE CHARACTER OF SHAFT RESISTANCE ALONG LARGE DIAMETER SOCKETED PILE CASTED IN SOFT ROCK[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(1): 40-43. doi: 10.13204/j.gyjz200601013
    [13]Peng Changhai. TRY TO DISCUSS THE CONTRIBUTION OF NOCTURNAL RADIATION TO THE THERMAL SURROUNDINGS OF BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 35-37. doi: 10.13204/j.gyjz200509010
    [14]Yang Zhongbao, Zou Daoqin, . THE SITE TEST OF SUPER-LENGTH CONCRETE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 64-66,74. doi: 10.13204/j.gyjz200508016
    [15]Liu Zhiyong, Sun Wei, Yang Dingyi, Zhou Xingang. RESEARCH AND PROGRESS OF MODELING CHLORIDE INGRESS FOR CORROSION RISK PREDICTION OF MARINE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 61-64. doi: 10.13204/j.gyjz200406020
  • Cited by

    Periodical cited type(3)

    1. JIA Yonghong,GUO Shurui,LI Jin,GUO Lei,CHENG Zhu,ZHANG Yin,YANG Hanyu,LONG Enshen. Comparative Experimental Study on Heat Transfer Characteristics of Building Exterior Surface at High and Low Altitudes. Journal of Thermal Science. 2024(03): 1119-1131 .
    2. 蒋能飞,李梅香. 超高层建筑表面换热系数对建筑表面温度的影响. 暖通空调. 2024(S2): 527-532 .
    3. 朱新荣,杨轩,杨雯,刘加平. 采暖建筑外表面热流及换热系数现场测试研究. 太阳能学报. 2021(08): 258-264 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0305101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.4 %FULLTEXT: 9.4 %META: 89.3 %META: 89.3 %PDF: 1.3 %PDF: 1.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.5 %其他: 7.5 %其他: 0.6 %其他: 0.6 %China: 2.5 %China: 2.5 %上海: 3.8 %上海: 3.8 %东莞: 1.3 %东莞: 1.3 %兰州: 1.3 %兰州: 1.3 %北京: 11.9 %北京: 11.9 %十堰: 1.3 %十堰: 1.3 %南京: 0.6 %南京: 0.6 %南昌: 0.6 %南昌: 0.6 %台州: 0.6 %台州: 0.6 %合肥: 0.6 %合肥: 0.6 %吉林: 0.6 %吉林: 0.6 %哈尔滨: 0.6 %哈尔滨: 0.6 %嘉兴: 1.9 %嘉兴: 1.9 %天津: 3.1 %天津: 3.1 %太原: 0.6 %太原: 0.6 %宁波: 0.6 %宁波: 0.6 %宜春: 0.6 %宜春: 0.6 %常州: 0.6 %常州: 0.6 %广州: 0.6 %广州: 0.6 %张家口: 0.6 %张家口: 0.6 %成都: 1.9 %成都: 1.9 %扬州: 2.5 %扬州: 2.5 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.6 %朝阳: 0.6 %杭州: 2.5 %杭州: 2.5 %株洲: 0.6 %株洲: 0.6 %江门: 1.3 %江门: 1.3 %沈阳: 1.9 %沈阳: 1.9 %法尔肯施泰因: 0.6 %法尔肯施泰因: 0.6 %深圳: 0.6 %深圳: 0.6 %温州: 0.6 %温州: 0.6 %漯河: 3.1 %漯河: 3.1 %石家庄: 1.9 %石家庄: 1.9 %福州: 1.3 %福州: 1.3 %芒廷维尤: 11.3 %芒廷维尤: 11.3 %芝加哥: 1.3 %芝加哥: 1.3 %西宁: 8.8 %西宁: 8.8 %西安: 0.6 %西安: 0.6 %贵阳: 1.9 %贵阳: 1.9 %运城: 6.9 %运城: 6.9 %通化: 0.6 %通化: 0.6 %邯郸: 1.3 %邯郸: 1.3 %郑州: 1.3 %郑州: 1.3 %重庆: 0.6 %重庆: 0.6 %镇江: 0.6 %镇江: 0.6 %长沙: 0.6 %长沙: 0.6 %青岛: 1.3 %青岛: 1.3 %其他其他China上海东莞兰州北京十堰南京南昌台州合肥吉林哈尔滨嘉兴天津太原宁波宜春常州广州张家口成都扬州晋城朝阳杭州株洲江门沈阳法尔肯施泰因深圳温州漯河石家庄福州芒廷维尤芝加哥西宁西安贵阳运城通化邯郸郑州重庆镇江长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (141) PDF downloads(2) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return