Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HUANG Wei, SUN Yujiao, ZHANG Jiarui, FAN Zhenhui, MA Xiang. RESEARCH STATUS OF NEW CONNECTION TECHNIQUE OF PREFABRICATED WALL STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(7): 181-189. doi: 10.13204/j.gyjzG19112913
Citation: HUANG Wei, SUN Yujiao, ZHANG Jiarui, FAN Zhenhui, MA Xiang. RESEARCH STATUS OF NEW CONNECTION TECHNIQUE OF PREFABRICATED WALL STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(7): 181-189. doi: 10.13204/j.gyjzG19112913

RESEARCH STATUS OF NEW CONNECTION TECHNIQUE OF PREFABRICATED WALL STRUCTURE

doi: 10.13204/j.gyjzG19112913
  • Received Date: 2019-11-29
  • Publish Date: 2020-10-17
  • The prefabricated wall structure is the main structural form of industrialized residential buildings. The connection technique for prefabricated components has a significant effect on structural performance. The new connection technique with horizontal and vertical joints were summarized. According to the different connection mechanisms, the introduction is from the perspective of strong connections and earthquake-resilience connections. The basic structure, stress mechanism, seismic performance and related deepening studies of different connections are described. The emphasis was on the new type of bolt connection, earthquake-resilience connections of horizontal joints and energy-dissipation connections for vertical joints. The characteristics and existing problems of different connections were analyzed. The development trend of connection technology for prefabricated wall structure was summarized, and future research directions and issues that need to be further addressed were discussed.
  • 中华人民共和国住房和城乡建设部.装配式混凝土结构技术规程:JGJ 1-2014[S]. 北京:中国建筑工业出版社,2014.
    Standards Association of New Zealand.Concrete Structures Standard:NZS 3101:2006[S]. Wellington, New Zealand:2006.
    吕西林, 周颖, 陈聪. 可恢复功能抗震结构新体系研究进展[J]. 地震工程与工程振动, 2014, 34(4):130-139.
    姜洪斌, 张海顺, 刘文清, 等. 预制混凝土插入式预留孔灌浆钢筋搭接试验[J]. 哈尔滨工业大学学报, 2011(10):23-28.
    钱稼茹, 彭媛媛, 秦珩, 等. 竖向钢筋留洞浆锚间接搭接的预制剪力墙抗震性能试验[J]. 建筑结构, 2011(2):12-16.
    WU D, LIANG S, GUO Z, et al. The Development and Experimental Test of a New Pore-Forming Grouted Precast Shear Wall Connector[J]. KSCE Journal of Civil Engineering, 2016, 20(4):1462-1472.
    SAYADI A A, RAHMAN B A, JUMAAT Z B, et al. The Relationship Between Interlocking Mechanism and Bond Strength in Elastic and Inelastic Segment of Splice Sleeve[J]. Construction and Building Materials, 2014, 55:227-237.
    PSYCHARIS I N, KALYVIOTIS I M, MOUZAKIS H P. Experimental Investigation of the Response of Precast Concrete Cladding Panels with Integrated Connections Under Monotonic and Cyclic Loading[J]. Engineering Structures, 2018, 159:75-88.
    WU X, XIA X, KANG T H, et al. Flexural Behavior of Precast Concrete Wall-Steel Shoe Composite Assemblies with Dry Connection[J]. Steel and Composite Structures, 2018, 29:545-555.
    LIM W Y, THOMAS K, HONG S. Cyclic Lateral Testing of Precast Concrete T-Walls in Fast Low-Rise Construction[J]. ACI Structural Journal,2016,113(1):179-189.
    薛伟辰, 古徐莉, 胡翔, 等. 螺栓连接装配整体式混凝土剪力墙低周反复试验研究[J]. 土木工程学报, 2014, 47(增刊2):221-226.
    GUO W, ZHAI Z P, CUI Y, et al. Seismic Performance Assessment of Low-Rise Precast Wall Panel Structure with Bolt connections[J]. Engineering Structures, 2019, 181:562-578.
    SUN J, QIU H, LU Y. Experimental Study and Associated Numerical Simulation of Horizontally Connected Precast Shear Wall Assembly[J]. The Structural Design of Tall and Special Buildings, 2016,25(13):659-678.
    赵斌, 王庆杨, 吕西林. 采用全装配水平接缝的预制混凝土剪力墙抗震性能研究[J]. 建筑结构学报, 2018, 39(12):52-59.
    周颖, 吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报, 2011, 32(9):1-10.
    BORA C, MICHAEL O, SUZANNE N, et al. Development of a Precast Concrete Shear-Wall System Requiring Special Code Acceptance[J]. PCI Journal, 2007, 52(10):122-135.
    KHALED A S, SAMI H R, ROBERT W D. Horizontal Connections for Precast Concrete Shear Walls Subjected to Cyclic Deformations Part 2:Prestressed Connections[J]. ACI Journal, 1995, 40(5):82-96.
    KURAMA Y C, PESSIKI S, SAUSE R, et al. Seismic Behavior and Design of Unbounded Post-Tensioned Precast Concrete Walls[J]. PCI Journal, 1999, 44(3):72-89.
    ERKMEN B, SCHULTZ A E. Self-Centering Behavior of Unbonded, Post-Tensioned Precast Concrete Shear Walls[J]. Journal of Earthquake Engineering, 2009, 13(7):1047-1064.
    KURAMA Y. Hybrid Post-Tensioned Precast Concrete Walls for Use in Seismic Regions[J]. PCI Journal, 2002, 47(5):37-59.
    杨博雅, 吕西林. 预应力预制混凝土剪力墙截面设计方法[J]. 建筑结构学报, 2018,39(2):79-87.
    JOSEÉ I. RESTREPO, RAHMAN A. Seismic Performance of Self-Centering Structural Walls Incorporating Energy Dissipators[J]. Journal of Structural Engineering, 2007, 133(11):1560-1570.
    CUI H, WU G, ZHANG J, et al. Experimental Study on Damage-Controllable Rocking Walls with Resilient Corners[J]. Magazine of Concrete Research, 2019,71(21):1113-1129.
    黄远, 易展辉. 带耗能角钢无黏结预应力预制剪力墙抗震性能[J]. 建筑科学与工程学报, 2019, 36(3):74-82.
    黄远, 许铭, 张锐. 全装配式混凝土结构界面软索连接拼缝抗剪性能试验研究[J]. 湖南大学学报(自然科学版), 2014(6):22-27.
    刘亨, 徐其功. 全装配式混凝土墙板结构的竖向接缝研究[J]. 建筑结构, 2018,48(7):68-72.
    JOERGENSEN H B, HOANG L C. Tests and Limit Analysis of Loop Connections Between Precast Concrete Elements Loaded in Tension[J]. Engineering Structures, 2013, 52:558-569.
    LIMA A D, CURADO M, RODRIGUES P. Loop Connection with Fibre-Reinforced Precast Concrete Components in Tension[J]. Engineering Structures, 2014, 72:140-151.
    VAGHEI R, HEJAZI F, TAHERI H, et al. Evaluate Performance of Precast Concrete Wall to Wall Connection[J]. APCBEE Procedia, 2014, 9:285-290.
    SRENSEN J H, HOANG L C, FISCHER G, et al. Construction-Friendly Ductile Shear Joints For Precast Concrete Panels[J]. International Conference on Performance-based and Life-cycle Structural Engineering, 2015:640-649.
    SUN J, QIU H X. Seismic Behavior and Mechanism Analysis of innovative Precast Shear Wall Involving Vertical Joints[J]. Journal of Central South University, 2015, 22(4):1536-1547.
    王威, 熊峰, 徐锦祥, 等. 预制装配式混凝土墙板螺栓连接抗剪性能试验研究[J]. 四川大学学报(工程科学版), 2016(增刊2):86-92.
    CHRISTIAN L H, LAWRENCE D R, CHRIS P P. Behavior of Welded Plate Connections in Precast Concrete Panels Under Simulated Seismic Loads[J]. PCI Journal, 2002, 47(4):122-133.
    PANTELIDES C P, VOLNYY V A, GERGELY J, et al. Seismic Retrofit of Precast Concrete Panel Connections with Carbon Fiber Reinforced Polymer Composites[J]. PCI Journal, 2003, 48(1):92-104.
    刘继新, 李文峰, 王啸霆. 新型装配整体式墙体抗震性能试验研究[J]. 地震工程与工程振动, 2012(6):112-120.
    黄昌辉. 带竖向接缝装配式剪力墙抗震性能试验及设计方法研究[D]. 广州:华南理工大学, 2017.
    AVTAR S P, CEDRIC M, PAUL F S, et al. Friction Joints for Seismic Control of Large Panel Structures[J]. PCI Journal, 1980, 25(6):38-61.
    NEGRO P, LAMPERTI T M. Seismic Response of Precast Structures with Vertical Cladding Panels:The SAFECLADDING Experimental Campaign[J]. Engineering Structures, 2017, 132:205-228.
    VAGHEI R, HEJAZI F, TAHERI H, et al. Development of a New Connection for Precast Concrete Walls Subjected to Cyclic Loading[J]. Earthquake Engineering and Engineering Vibration, 2017(1):100-120.
    GUO T, WANG L, XU Z, et al. Experimental and Numerical Investigation of Jointed Self-Centering Concrete Walls with Friction Connectors[J]. Engineering Structures, 2019, 161:192-206.
    CRISAFULLI F J, RESTREPO J I. Ductile Steel Connections for Seismic Resistant Precast Buildings[J]. Journal of Earthquake Engineering, 2003, 74:541-553
    LEE C H, KIM J, KIM D H, et al. Numerical and Experimental Analysis of Combined Behavior of Shear-Type Friction Damper and Non-Uniform Strip Damper for Multi-Level Seismic Protection[J]. Engineering Structures, 2016, 114:75-92.
    KIM Y J, AHN T S, BAE J H, et al. Experimental Study of Using Cantilever Type Steel Plates for Passive Energy Dissipation[J]. International Journal of Steel Structures, 2016, 16(3):959-974.
    DAL LAGO B, BIONDINI F, TONIOLO G. Experimental Tests on Multiple-Slit Devices for Precast Concrete Panels[J]. Engineering Structures, 2018, 167:420-430.
    SCHULTZ A E, MAGANA R A. Seismic Behavior of Connections in Precast Concrete Walls[C]//Mete A Sozen Symposium A Tribute from His Students. 1996.
    HENRY R S, AALETI S, SRITHARAN S. Concept and Finite-Element Modeling of New Steel Shear Connectors for Self-Centering Wall Systems[J]. Journal of Engineering Mechanics, 2010, 11(2):220-229.
    YVKSEL E, KARADOGAN F, ÖZKAYNAK H, et al. Behaviour of Steel Cushions Subjected to Combined Actions[J]. Bulletin of Earthquake Engineering, 2018, 16(2):707-729.
  • Relative Articles

    [1]LIU Tingyong, ZHANG Ailin, LI Jiulin. Research on the Performance of Prestressed High-Strengh Bolted Joints of Fully-Prefabricated Long-Span Spatial Structures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 44-53. doi: 10.3724/j.gyjzG24022208
    [2]ZHANG Ailin, YANG Shuo, JIANG Ziqin, ZHANG Wenying, LIU Jie, YANG Xiaofeng. Seismic Fragility Analysis of Steel Frame Structure with Lateral Resistance Energy-Consuming Device[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 101-108. doi: 10.13204/j.gyjzG21122104
    [3]HAN Liangjun, LI Jun, GE Yuanhui, LI Yanchang, LIANG Jiadong, WANG Rongqi, ZHA Xiaoxiong. Theoretical Analysis and Seismic Finite Element Study on Joint Performance of a New Fabricated Dry Connection Self-Centering Structure[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(3): 130-138. doi: 10.13204/j.gyjzG22040210
    [4]GE Yuanhui, LI Yanchang, HAN Liangjun, LI Jun, LIANG Jiadong, WANG Rongqi, ZHA Xiaoxiong. Research Status of Perfabricated Self-Centering Structures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(2): 158-168. doi: 10.13204/j.gyjzG21121405
    [5]GE Yuanhui, LI Yanchang, HAN Liangjun, LI Jun, LIANG Jiadong, WANG Rongqi, ZHA Xiaoxiong. Design Method of Combination Technique for Prefabricated Structure and Self-Resetting Structure[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 60-69,193. doi: 10.13204/j.gyjzG21121407
    [6]CHONG Xun, CHEN Zixing, JIANG Qing, HUANG Junqi, LI Haoran, FANG Xiaowen, XIE Jinchen. Research on Seismic Performance of Prefabricated Concrete Shear Wall Structures with Bolt Connections[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 12-18,90. doi: 10.13204/j.gyjzG21012705
    [7]JIANG Jili, HAN Jun, REN Wei, LI Yingmin. STUDY ON BEARING CAPACITY AND SEISMIC PROPERTIES OF PREFABRICATED SKIP-FLOOR SHEAR WALLS WITH BOLTED CONNECTION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 45-53,109. doi: 10.13204/j.gyjzG19111215
    [8]WANG Xiujun, WANG Yan. RESEARCH ON FLEXURAL CAPACITY OF PREFABRICATED BEAM-COLUMN HIGH-STRENGTH BOLTED JOINT WIEH EXTERNAL DIAPHRAGMS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 125-132. doi: 10.13204/j.gyjzG20070605
    [9]YU Haifeng, HAO Mengtian, MA Jiansuo, YU Ke. QUASI-STATIC TEST AND NUMERICAL ANALYSIS OF PREFABRICATED SHEAR WALL WITH VERTICAL CONNECTIONS OF EMBEDDED STEEL PLATE AND BOLT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 24-30. doi: 10.13204/j.gyjz202005005
    [10]LAN Tao, LI Ran, YAN Tian, JIANG Ziqin, CHENG Kuikui. RESEARCH ON MECHANICAL PROPERTIES AND STRESS MECHANISM OF EARTHQUAKE-RESILIENT DUCTILITY-REINFORCED PREFABRICATED OPENING-WEB STEEL CHANNEL BEAM-COLUMN JOINT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 36-42. doi: 10.13204/j.gyjz202003007
    [11]LAN Tao, SHEN Cunjie, LI Ran, JIANG Ziqin, CHENG Kuikui. NUMERICAL STUDY ON SEISMIC BEHAVIOR OF EARTHQUAKE-RESILIENT DUCTILITY-REINFORCED PREFABRICATED OPENING-WEB STEEL CHANNEL BEAM-COLUMN JOINT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 43-50. doi: 10.13204/j.gyjz202003008
    [12]ZHANG Ailin, CHENG Kuikui, JIANG Ziqin, WEI Shilan, SHEN Cunjie. RESEARCH ON MECHANICAL PROPERTIES AND STRESS MECHANISM OF EARTHQUAKE-RESILIENT PREFABRICATED OPENING-WEB CHANNEL BEAM-COLUMN JOINTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 29-35. doi: 10.13204/j.gyjz202003006
    [13]LIU Xianghua, YUAN Huanxin, DU Xinxi, HU Song, DU Yushan. ANALYSIS AND CALCULATION METHOD OF BEARING CAPACITY OF STAINLESS STEEL BOLTED T-STUBS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 125-131,144. doi: 10.13204/j.gyjz202004022
    [17]Pang Rui, Zhao Yi, Liang Shuting, Zhang Shuo. EXPERIMENTAL STUDY OF SHEAR CAPACITY OF HAIRPIN SLAB CONNECTION IN PRECAST RC FLOOR[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 50-54. doi: 10.13204/j.gyjz201402012
    [18]Zou Ruomeng, Dong Jun, Zhang Jinxu. A COMPARISION OF CONNECTION DESIGN IN STAINLESS STEEL STRUCTURES BETWEEN AMERICAN AND EUROPEAN CODES[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 63-66. doi: 10.13204/j.gyjz2011205010
    [19]Zhu Yong, Su Qiliang, Zhou Yun. EFFECTS ON SEISMIC STRENGTHENING OF COUPLING BEAMS WITH OR WITHOUT BOLT CONNECTIONS IN BEAM SPAN[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 42-44,38. doi: 10.13204/j.gyjz200912012
  • Cited by

    Periodical cited type(12)

    1. 王斌,张静玄,史庆轩,杨州,蔡文哲,张烨. 装配式混凝土剪力墙结构接缝连接研究进展. 建筑科学与工程学报. 2024(01): 15-30 .
    2. 党春洁,秦瑞虎. 基于虚拟技术的室内墙体结构可视化建模仿真. 计算机仿真. 2024(01): 192-196 .
    3. 李妍,姚子奡. 新型横向连接装配整体式榫卯剪力墙结构抗震性能模拟分析. 吉林建筑大学学报. 2024(03): 8-14 .
    4. 黄炜,张家瑞,苗欣蔚,黄惠. 盒式连接全装配式复合墙体抗震性能试验研究. 工程科学与技术. 2023(01): 209-221 .
    5. 崔洪军,朱嘉锋,姚胜,朱敏清. 装配式建筑框架节点研究综述. 科学技术与工程. 2023(01): 1-12 .
    6. 柴苗,袁哲慧,刘巨明,孙涛,谢文标. 装配式节能墙体构造设计与热工性能研究. 居舍. 2023(27): 84-87 .
    7. 李斌,罗岩岩,李星波. 竖向分布钢筋部分连接装配整体式剪力墙抗震性能试验及有限元分析. 工业建筑. 2022(05): 51-59+23 . 本站查看
    8. 李妍,赵山木. 新型装配整体式混凝土剪力墙横向连接抗弯性能模拟分析. 建筑结构. 2022(S1): 1788-1793 .
    9. 王立军,刘鑫志,付素娟. 装配式软索连接剪力墙节点力学性能试验研究. 河北建筑工程学院学报. 2022(02): 1-8 .
    10. 张海亮,刘金果,胡展孝,苗欣蔚. 装配式开洞砌体填充墙试验及建造技术. 建筑施工. 2022(10): 2490-2494 .
    11. 刘继良,王宝民,罗玉萍,安宁,张鹏飞,初明进. 不同接缝构造的装配整体式剪力墙受力性能试验研究. 建筑结构. 2021(09): 15-22 .
    12. 郑志远,潘寒,胡中平,卢文达. 预制钢筋混凝土剪力墙连接体系研究综述. 建筑结构. 2021(S2): 1172-1180 .

    Other cited types(16)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.1 %FULLTEXT: 15.1 %META: 79.9 %META: 79.9 %PDF: 4.9 %PDF: 4.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.9 %其他: 13.9 %其他: 0.3 %其他: 0.3 %China: 1.9 %China: 1.9 %Rochester: 0.9 %Rochester: 0.9 %[]: 0.3 %[]: 0.3 %上海: 1.2 %上海: 1.2 %东莞: 1.2 %东莞: 1.2 %乌兰察布: 0.3 %乌兰察布: 0.3 %北京: 5.9 %北京: 5.9 %南京: 0.6 %南京: 0.6 %南宁: 0.3 %南宁: 0.3 %南昌: 0.3 %南昌: 0.3 %台州: 0.6 %台州: 0.6 %合肥: 0.3 %合肥: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.6 %天津: 0.6 %太原: 0.6 %太原: 0.6 %广州: 1.2 %广州: 1.2 %张家口: 0.6 %张家口: 0.6 %成都: 0.9 %成都: 0.9 %扬州: 0.3 %扬州: 0.3 %无锡: 0.3 %无锡: 0.3 %昆明: 0.6 %昆明: 0.6 %晋城: 0.9 %晋城: 0.9 %朝阳: 0.6 %朝阳: 0.6 %杭州: 0.6 %杭州: 0.6 %武汉: 1.2 %武汉: 1.2 %汉中: 0.6 %汉中: 0.6 %济南: 0.6 %济南: 0.6 %深圳: 0.3 %深圳: 0.3 %温州: 0.3 %温州: 0.3 %湖州: 0.3 %湖州: 0.3 %漯河: 0.9 %漯河: 0.9 %珠海: 0.3 %珠海: 0.3 %盐城: 0.6 %盐城: 0.6 %石家庄: 0.9 %石家庄: 0.9 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 36.7 %芒廷维尤: 36.7 %芝加哥: 0.9 %芝加哥: 0.9 %莱芜: 0.3 %莱芜: 0.3 %西宁: 2.5 %西宁: 2.5 %西安: 0.9 %西安: 0.9 %诺沃克: 0.9 %诺沃克: 0.9 %贵阳: 0.6 %贵阳: 0.6 %运城: 3.4 %运城: 3.4 %邯郸: 0.3 %邯郸: 0.3 %郑州: 6.2 %郑州: 6.2 %重庆: 1.5 %重庆: 1.5 %长沙: 1.9 %长沙: 1.9 %香港: 0.9 %香港: 0.9 %黄冈: 0.6 %黄冈: 0.6 %其他其他ChinaRochester[]上海东莞乌兰察布北京南京南宁南昌台州合肥嘉兴天津太原广州张家口成都扬州无锡昆明晋城朝阳杭州武汉汉中济南深圳温州湖州漯河珠海盐城石家庄绵阳芒廷维尤芝加哥莱芜西宁西安诺沃克贵阳运城邯郸郑州重庆长沙香港黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (257) PDF downloads(17) Cited by(28)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return