Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YANG Liu, FU Rong, HE Wenfang, HE Quan, LIU Yan. INVESTIGATION ON THE GREEN DWELLING DESIGN STRATEGIES IN DRY-HOT AND DRY-COLD CLIMATE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(7): 28-33. doi: 10.13204/j.gyjzG19112609
Citation: YANG Liu, FU Rong, HE Wenfang, HE Quan, LIU Yan. INVESTIGATION ON THE GREEN DWELLING DESIGN STRATEGIES IN DRY-HOT AND DRY-COLD CLIMATE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(7): 28-33. doi: 10.13204/j.gyjzG19112609

INVESTIGATION ON THE GREEN DWELLING DESIGN STRATEGIES IN DRY-HOT AND DRY-COLD CLIMATE

doi: 10.13204/j.gyjzG19112609
  • Received Date: 2020-02-17
  • Publish Date: 2020-10-17
  • Recently, the construction of energy efficiency buildings has been one of the main objectives of sustainable development, especially for areas with extreme climate. In present study, field measurement of indoor thermal environment was conducted in two demonstration houses in Turpan to investigate the green building design strategies suitable for dry-hot and dry-cold areas. The common brick houses in Turpan were selected as the reference group for comparative analysis. Meanwhile, indoor thermal environment was evaluated based on the thermal adaptive model in Turpan. The results indicated that the heavy structure envelope and constructional patterns based on the thermal adaptive behaviors of residents could improve indoor thermal environment. In summer, semi-basement was the most effective strategy to satisfy human thermal comfort, followed by night ventilation. The indoor air temperature in semi-basement was around 31 ℃ while outdoor temperature was as high as 44.3 ℃. In winter, passive solar heating and semi-basement were both effective.
  • 杨柳, 杨晶晶, 宋冰,等.被动式超低能耗建筑设计基础与应用[J]. 科学通报, 2015(18):1698-1710.
    BECK H E, ZIMMERMANN N E,MCVICAR T R, et al. Present and Future Kppen-Geiger Climate Classification Maps at 1 km Resolution[J].Scientific Data, 2018(5):180-214.
    中华人民共和国住房和城乡建设部. 民用建筑热工设计规范:GB 50176-2016[S]. 北京:中国建筑工业出版社, 2016.
    DABAIEH M, WANAS O, HEGAZY M A, et al. Reducing Cooling Demands in a Hot Dry Climate:A Simulation Study for Non-Insulated Passive Cool Roof Thermal Performance in Residential Buildings[J]. Energy and Buildings, 2015, 89:142-152.
    MOUSA W A Y, LANG W, AUER T, et al. A Pattern Recognition Approach for Modeling the Air Change Rates in Naturally Ventilated Buildings from Limited Steady-State CFD Simulations[J]. Energy and Buildings, 2017, 155:54-65.
    QIAO Y H, YANG L, BAO J Y, et al. Reduced-Scale Experiments on the Thermal Performance of Phase Change Material Wallboard in Different Climate Conditions[J]. Building and Environment, 2019, 160.DOI: 10.1016/j.buildenv.2019.106191.
    SADEGHI H, KALANTAR V. Performance Analysis of a Wind Tower in Combination with an Underground Channel[J]. Sustainable Cities and Society, 2018, 37:427-437.
    GOUDARZI H, MOSTAFAEIPOUR A. Energy Saving Evaluation of Passive Systems for Residential Buildings in Hot and Dry Regions[J]. Renewable and Sustainable Energy Reviews, 2017, 68:432-446.
    KHALILI M, AMINDELDAR S. Traditional Solutions in Low Energy Buildings of Hot-Arid Regions of Iran[J]. Sustainable Cities and Society, 2014, 13:171-181.
    SALJOUGHINEJAD S, SHARIFABAD S R. Classification of Climatic Strategies Used in Iranian Vernacular Residences Based on Spatial Constituent Elements[J]. Building and Environment, 2015, 92:475-493.
    何泉, 何文芳, 杨柳, 等. 极端气候条件下的新型生土民居建筑探索[J]. 建筑学报, 2016(11):94-98.
    中华人民共和国住房和城乡建设部. 建筑节能气象参数标准:JGJ/T 346-2014[S]. 北京:中国建筑工业出版社, 2014.
    中华人民共和国住房和城乡建设部. 建筑热环境测试方法标准:JGJ/T 347-2014[S]. 北京:中国建筑工业出版社, 2014.
    ANSI/ASHRAE. Thermal Environmental Conditions for Human Occupancy:ASHRAE-55[S]. Atlanda, GA:American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2004.
    MICHAEL A, DEMOSTHENOUS D, PHILOKYPROU M. Natural Ventilation for Cooling in Mediterranean Climate:A Case Study in Vernacular Architecture of Cyprus[J]. Energy and Buildings, 2017, 144:333-345.
    任艺梅. 基于适应性热舒适的吐鲁番农宅室内热环境评价研究[D]. 西安:西安建筑科技大学,2017.
  • Relative Articles

    [1]LIN Hankun, XIAO Yiqiang, ZHU Xuemei. Research on Couple Simulation Method on Effects of Thermal and Wind Environment of Vertical Climbing Green Facades[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 88-96. doi: 10.13204/j.gyjzG22060205
    [2]WU Di, ZHANG Hengyu, TANG Li, LYU Hongyi, FU Mengze. Research on Thermal Environment Evaluation of a Traditional Brick-Timber House in Daokou Town of the Northern Henan in Winter[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 85-91. doi: 10.13204/j.gyjzG22010416
    [3]LI Zhixing, PAN Xinchen, DONG Qingxin. Research on Climate Responsive Design and Optimization of Middle and Low-Rise Residential Buildings[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 17-26. doi: 10.13204/j.gyjzg20122320
    [4]ZHOU Shiwen, SHI Tiemao, LI Sui, LI Diansheng. An Assessment Method and Planning Responses for the Thermal Environment of Land Surfaces in Shenyang Based on Urban Morphology Parameters[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 42-50. doi: 10.13204/j.gyjzG21052409
    [5]ZHOU Yili, SONG Dexuan, MO Hongzhi, YU Xiangyu. Measurement and Analysis of Indoor Thermal Environment of Regeneration Space of School-Run Factory in Winter: A Case Study on the Architectural Design Studio in NO.246 Guang Yan Road in Shanghai[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 40-47. doi: 10.13204/j.gyjzg21090901
    [6]LI Bin, GUO Weihong, DOU Jianqi, LIU Xiao, ZHANG Yuqing. RESEARCH ON DIAGNOSIS AND TREATMENT FOR THERMAL ENVIRONMENT FROM THE PERSPECTIVE OF HEALTHY DWELLING[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 19-27. doi: 10.13204/j.gyjzG20103004
    [7]HE Zhiheng, CHEN Jing, LIU Jiaping. THERMAL DESIGN OF ULTRA-LOW ENERGY CONSUMPTION BUILDINGS ON ISLANDS IN HOT AND HUMID AREAS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(7): 1-4,14. doi: 10.13204/j.gyjzG20071302
    [11]Zhang Hui, Yu Zhuang. RESEARCH ON CLIMATE ADAPTABILITY OF ENERGY CONSERVATION BUILDING WITH RENEWABLE ENERGY SOURCES IN HOT-SUMMER AND COLD-WINTER ZONE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 40-43,114. doi: 10.13204/j.gyjz201305009
    [12]Liu Dalong, Liu Jiaping, Yang Liu, Hu Rongrong. ECOLOGICAL FOLK HOUSE AND INDOOR THERMAL ENVIRONMENT IN NORTHWEST CHINA[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(2): 19-22,36. doi: 10.13204/j.gyjz201202005
    [13]Peng Xiaoyun. DISCUSSION ON THERMAL MICRO- ENVIRONMENT OF ECOLOGICAL CAMPUS OF COLLEGE AND UNIVERSITY[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(2): 34-36. doi: 10.13204/j.gyjz2006020010
    [14]Peng Xiao-yun. THERMAL ENVIRONMENT IN THE BUILDING ATRIUM IN NANCHANG AND NANJING[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(6): 31-34. doi: 10.13204/j.gyjz200606011
    [15]Peng Changhai. TRY TO DISCUSS THE CONTRIBUTION OF NOCTURNAL RADIATION TO THE THERMAL SURROUNDINGS OF BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 35-37. doi: 10.13204/j.gyjz200509010
    [16]Lin Chuan, Tian Xianfeng, Fang Zhiyong. ARCHITECTURAL DESIGN OF ATRIUM AND CONTROL OF ITS THERMAL AMENITY[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 28-29,32. doi: 10.13204/j.gyjz200407007
  • Cited by

    Periodical cited type(5)

    1. 麦吾兰·吐尔逊江,塞尔江·哈力克. 新疆阿图什传统民居营造特征与生态智慧研究. 城市建筑. 2024(01): 35-39 .
    2. 李世芬,秦云鹏,况源. 多目标导向下的严寒地区乡村民居设计方法研究. 当代建筑. 2023(02): 125-128 .
    3. 郭会坤,王岩,费凡,徐晨. 以主客观评价为导向的邯郸广府民居冬季热环境优化改造对策. 天津城建大学学报. 2023(02): 108-115 .
    4. 张磊,韩庆卿,桑国臣,朱轶韵,崔晓玲,韩玮霄,余航凯. 极端干热地区传统民居热环境测试与气候适应性分析. 建筑科学. 2023(10): 50-56 .
    5. 杨柳,郝天,刘衍,袁玮晴,刘加平. 传统民居的干热气候适应原型研究. 建筑节能(中英文). 2021(11): 105-115 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0702.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.3 %FULLTEXT: 12.3 %META: 85.2 %META: 85.2 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.9 %其他: 13.9 %China: 2.0 %China: 2.0 %Micronesia Federated States of: 0.8 %Micronesia Federated States of: 0.8 %上海: 1.2 %上海: 1.2 %东莞: 0.8 %东莞: 0.8 %丽水: 0.4 %丽水: 0.4 %乌鲁木齐: 0.4 %乌鲁木齐: 0.4 %凉山: 0.8 %凉山: 0.8 %北京: 1.6 %北京: 1.6 %南京: 0.4 %南京: 0.4 %台州: 0.4 %台州: 0.4 %天津: 2.5 %天津: 2.5 %太原: 0.4 %太原: 0.4 %宁德: 0.4 %宁德: 0.4 %宁波: 0.4 %宁波: 0.4 %安康: 0.8 %安康: 0.8 %宣城: 1.2 %宣城: 1.2 %常州: 0.4 %常州: 0.4 %张家口: 2.0 %张家口: 2.0 %成都: 0.4 %成都: 0.4 %昆明: 0.8 %昆明: 0.8 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.4 %朝阳: 0.4 %杭州: 0.8 %杭州: 0.8 %武汉: 0.4 %武汉: 0.4 %洛阳: 0.8 %洛阳: 0.8 %温州: 0.8 %温州: 0.8 %渭南: 0.4 %渭南: 0.4 %湖州: 0.8 %湖州: 0.8 %漯河: 1.2 %漯河: 1.2 %焦作: 0.4 %焦作: 0.4 %石家庄: 0.8 %石家庄: 0.8 %芒廷维尤: 8.2 %芒廷维尤: 8.2 %芝加哥: 1.2 %芝加哥: 1.2 %衢州: 0.4 %衢州: 0.4 %西宁: 38.5 %西宁: 38.5 %西安: 2.0 %西安: 2.0 %贵阳: 0.8 %贵阳: 0.8 %运城: 4.5 %运城: 4.5 %邯郸: 0.8 %邯郸: 0.8 %郑州: 1.2 %郑州: 1.2 %重庆: 0.4 %重庆: 0.4 %长沙: 0.8 %长沙: 0.8 %阳泉: 0.4 %阳泉: 0.4 %青岛: 0.8 %青岛: 0.8 %其他ChinaMicronesia Federated States of上海东莞丽水乌鲁木齐凉山北京南京台州天津太原宁德宁波安康宣城常州张家口成都昆明晋城朝阳杭州武汉洛阳温州渭南湖州漯河焦作石家庄芒廷维尤芝加哥衢州西宁西安贵阳运城邯郸郑州重庆长沙阳泉青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (207) PDF downloads(6) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return