Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YE Qingyang, XUE Congcong, YU Min, WU Mingyang. MIX PROPORTION DESIGN AND COMPRESSIVE STRENGTH TEST OF ULTRA-HIGH PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 124-130,141. doi: 10.13204/j.gyjz202003021
Citation: YE Qingyang, XUE Congcong, YU Min, WU Mingyang. MIX PROPORTION DESIGN AND COMPRESSIVE STRENGTH TEST OF ULTRA-HIGH PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 124-130,141. doi: 10.13204/j.gyjz202003021

MIX PROPORTION DESIGN AND COMPRESSIVE STRENGTH TEST OF ULTRA-HIGH PERFORMANCE CONCRETE

doi: 10.13204/j.gyjz202003021
  • Received Date: 2019-08-20
  • At present, the research on mix proportion of ultra-high performance concrete (UHPC) focus on reactive powder concrete (RPC), and the incorporation of coarse aggregate in RPC can reduce the cost and the shrinkage of concrete, but the research on the mix proportion of CA-UHPC is relatively less. The paper discussed the influence of raw materials, production costs and production processes on the development and application of UHPC, and proposed a more economical and reasonable design of UHPC mix proportion. Under the simulated construction environment and simplifying the curing process, by manufacturing 38 sets of UHPC cube test blocks, the water-binder ratio, silica fume content, steel fiber content, coarse aggregate content and curing condition were studied. The influence rules of these factors on the compressive strength of UHPC were given and the reasons were analyzed. In addition, according to the test results, the optimum steel fiber content and coarse aggregate content were given.
  • 覃维祖, 曹峰. 一种超高性能混凝土:活性粉末混凝土[J]. 工业建筑, 1999,29(4):18-20.
    CHEYREZY M R P. Composition of Reactive Powder Concretes[J]. Cement and Concrete Research, 1995,25(7):1501-1511.
    朋改非, 杨娟, 高育欣, 等. 含粗骨料的超高性能混凝土抗压强度的影响因素[J]. 华北水利水电学院学报, 2012(6):5-9.
    阎培渝. 超高性能混凝土(UHPC)的发展与现状[J]. 混凝土世界, 2010(9):36-41.
    冯乃谦. 高性能混凝土与超高性能混凝土的发展和应用[J]. 施工技术, 2009,38(4):1-6.
    孙世国, 鲁艳朋. 超高性能混凝土国内外研究进展[J]. 科学技术与工程, 2018(20):184-199.
    中华人民共和国住房和城乡建设部.普通混凝土配合比设计规程:JGJ 55-2011[S]. 北京:中国建筑工业出版社,2011.
    HIREMATH P N, YARAGAL S C. Influence of Mixing Method, Speed and Duration on the Fresh and Hardened Properties of Reactive Powder Concrete[J]. Construction and Building Materials, 2017,141:271-288.
    吴炎海, 何雁斌. 活性粉末混凝土(RPC200)的配制试验研究[J]. 中国公路学报, 2003(4):44-49.
    WANG C, YANG C, LIU F, et al. Preparation of Ultra-High Performance Concrete with Common Technology and Materials[J]. Cement and Concrete Composites, 2012,34(4):538-544.
    HELMI M, HALL M R, Stevens L A, et al. Effects of High-Pressure/Temperature Curing on Reactive Powder Concrete Microstructure Formation[J]. Construction and Building Materials, 2016,105:554-562.
    鞠彦忠, 邵安乐, 王德弘. 活性粉末混凝土抗压强度影响因素研究[J]. 混凝土, 2017(1):130-132.
    ZDEB T. An Analysis of the Steam Curing and Autoclaving Process Parameters for Reactive Powder Concretes[J]. Construction and Building Materials, 2017,(131):758-766.
    崔巩, 刘建忠, 姚婷, 等. 基于Dinger-Funk方程的活性粉末混凝土配合比设计[J]. 东南大学学报(自然科学版), 2010,40(增刊2):15-19.
    SOLIMAN N A, TAGNIT-HAMOU A. Partial Substitution of Silica Fume with Fine Glass Powder in UHPC:Filling the Micro Gap[J]. Construction and Building Materials, 2017,139:374-383.
    陶毅, 张海镇, 王秋维, 等. 基于最紧密堆积理论制备活性粉末混凝土的试验研究[J]. 云南大学学报(自然科学版), 2017(1):107-114.
    ZDEB T. Effect of Vacuum Mixing and Curing Conditions on Mechanical Properties and Porosity of Reactive Powder Concretes[J]. Construction and Building Materials, 2019,209:326-339.
    徐海宾, 邓宗才. 新型超高性能混凝土力学性能试验研究[J]. 混凝土, 2014(4):20-23.
    程俊, 刘加平, 刘建忠, 等. 含粗骨料超高性能混凝土力学性能研究及机理分析[J]. 材料导报, 2017(23):115-119.
    黄政宇. 含粗骨料超高性能混凝土力学性能研究[J]. 湖南大学学报(自然科学版), 2018(3):47-54.
    朋改非, 杨娟, 高育欣, 等. 含粗骨料的超高性能混凝土抗压强度的影响因素[J]. 华北水利水电学院学报, 2012(6):5-9.
    XU L, LU Q, CHI Y, et al. Axial Compressive Performance of UHPC FIlled Steel Tube Stub Columns Containing Steel-Polypropylene Hybrid Fiber[J]. Construction and Building Materials, 2019,(204):754-767.
    XU L, WU F, CHI Y, et al. Effects of Coarse Aggregate and Steel Fibre Contents on Mechanical Properties of High Performance Concrete[J]. Construction and Building Materials, 2019,206:97-110.
    王苏岩, 籍凤秋. 配合比因素对RPC强度影响正交试验研究[J]. 低温建筑技术, 2009(1):9-11.
    刘红彬, 鞠杨, 孙华飞,等. 硅灰掺量对活性粉末混凝土力学性能的影响[J]. 工业建筑, 2015,45(4):132-135.
    薛刚, 张夏. 钢纤维掺量对活性粉末混凝土基本力学性能的影响[J]. 硅酸盐通报, 2018,37(3):934-938.
    陈浩宇, 王杰, 李俊毅, 等. 钢纤维对活性粉末混凝土性能的影响[J]. 中国港湾建设, 2013(3):32-36.
    高育欣, 沈锐, 程宝军, 等. 钢纤维搭配对超高性能混凝土拌合物性能的影响[J]. 混凝土与水泥制品, 2019(1):55-60.
    雷超, 方从启, 纪腾飞, 等. 钢纤维活性粉末混凝土流动性影响因素研究[J]. 新型建筑材料, 2017(7):130-132.
    中华人民共和国国家质量监督检验检疫总局.活性粉末混凝土:GB/T 31387-2015[S]. 北京:中国质检出版社,2015.
    SOBUZ H R, VISINTIN P, MOHAMED A M S, et al. Manu-facturing ULtra-High Performance Concrete Utilising Conventional Materials and Production Methods[J]. Construction and Building Materials, 2016,111:251-261.
    刘数华, 阎培渝, 冯建文. 超高强混凝土RPC强度的尺寸效应[J]. 公路, 2011(3):123-127.
    ZDEB T. An Analysis of the Steam Curing and Autoclaving Process Parameters for Reactive Powder Concretes[J]. Construction and Building Materials, 2017,131:758-766.
    BELLJAMIN G, MARSHALL D. Cylinder or Cube:Strength Testing of 80 to 200 MPa (11.6 to 29 ksi) Ultra-High-Performance Fiber-Reinforced Concrete[J]. ACI Materials Journal, 2008,105(6):603-609.
    AN M Z L Y. Size Effect on Compressive Strength of Reactive Powder Concrete[J]. Journal of China University of Mining and Technology, 2008(2):279-282.
    金凌志, 李月霞, 付强. 不同掺合料掺量的活性粉末混凝土抗压强度试验[J]. 河南科技大学学报(自然科学版), 2014,35(5):55-62.
    廖娟, 张涛, 戢文占,等. 养护制度对活性粉末混凝土(RPC)强度及韧性的影响[J]. 四川建筑科学研究, 2013,39(6):257-260.
    万超杰, 龙佩恒. 活性粉末混凝土的强度影响因素试验研究[J]. 北京建筑大学学报, 2015(1):38-41.
    高辉. 活性粉末混凝土配合比优化试验研究[J]. 粉煤灰综合利用, 2018(4):35-38.
    周锡玲, 谢友均, 张胜. 湿热养护制度对RPC200强度影响的研究[J]. 施工技术, 2007(4):49-51.
  • Relative Articles

    [1]ZHANG Hong, BAI Guanglin, DAI Ya, WANG Bo, ZHAO Jiahao, SHU Qianjin. Experimental Research on Unconfined Compressive Properties of Marine Clay Stabilized Reinforced by Polypropylene Fibers and Cement[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 223-232. doi: 10.3724/j.gyjzG24072602
    [2]LIU Cong, SUN Hongtao, DUAN Shouhui, OUYANG Song, GAO Lili. Research on Fatigue Property of Novel Composite Decks with Large-Scale Corrugated Steel Plate and UHPC Layer[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 161-166. doi: 10.13204/j.gyjzG21061009
    [3]LAI Guanghong, SUN Zhenghe, LIAO Feiyu, CHEN Yufeng, ZHANG Siya. Mix Proportion Optimization Design and Microstructure Study of UHPC Containing Polyvinyl Alcohol Fibers Based on Response Surface Method[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 87-94. doi: 10.3724/j.gyjzG24022808
    [4]ZHANG Lifei, ZHANG Xuanyu, ZHANG Ning, ZHOU Lingzhu, ZHENG Yu, XIA Lipeng. Research on Pull-out Test and Stress Model of UHPC Reinforced with GFRP Bent Bars[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 22-30. doi: 10.3724/j.gyjzG24041601
    [5]ZHU Mingqiao, TAN Yiping, TAN Xiaopeng, DONG Jiarui, LIU Wanli. Seismic Performance Analysis of UHPC Composite Columns Confined by GFRP Tubes[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 211-219. doi: 10.3724/j.gyjzG23071011
    [6]ZHANG Chenrong, YAN Jingliang, LIU Xiaogang. Research on Tensile and Shear Performance of Fully-Prefabricated Slabs with UHPC Split-Joints[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 119-127. doi: 10.13204/j.gyjzG23022811
    [7]CHEN Shuhui, XIA Zhanghua, WU Zelin, XU Yousheng, HU Mingliang, ZHU Sanfan. The Shear Bearing Capacity of Prefabricated UHPC Utility Tunnels[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 158-164. doi: 10.13204/j.gyjzG22010413
    [8]ZHENG Qizhen, LI Huiyan, LONG Libo, CHEN Gang. EXPERIMENTAL RESEARCH ON ASEISMIC PERFORMANCES OF PREFABRICATED SHEAR WALL CONNECTED BY UHPC[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 82-89. doi: 10.13204/j.gyjzG20042601
    [9]CHEN Gang, SHI Ming, LI Ruiran, XIAO Xu, BAI Jing. EXPERIMENTAL STUDY ON SPLITTING TENSILE STRENGTH OF CONCRETE REINFORCED BY STEEL FIBERS WITH MULTIPLE HOOKED-ENDS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 129-132,169. doi: 10.13204/j.gyjzG19111504
    [10]Xu Huan, Liu Qing, He Yuanye, Wang Zhenyu, Guan Yuxiao, Chen Bo. EXPERIMENTAL STUDY ON THE INFLUENCE OF COARSE AGGREGATE (PEBBLE) ON PROPERTIES OF SELF-COMPACTING CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 97-101. doi: 10.13204/j.gyjz201505021
    [11]Jiao Chujie, Yu Qijun. TEST RESEARCH ON MECHANICAL PROPERTIES OF STEEL FIBER REINFORCED LIGHTWEIGHT AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(03): 119-122. doi: 10.13204/j.gyjz201403025
    [12]Zhang Maogang, Fei Wei, Hatanaka Shigemitsu. MIX PROPORTION DESIGN METHOD FOR POROUS CONCRETE BASED ON VOID RATIO CONTROL[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 117-120. doi: 10.13204/j.gyjz201410024
    [13]He Peixiang, Liu Shoucheng, Han Zhang. EXPERIMENTAL STUDY OF INFLUENCE FACTORS ON THE MECHANICAL PROPERTY OF COARSE AGGREGATE CEMENT-BASED IRON-TAILINGS GROUTING MATERIAL[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(10): 87-90. doi: 10.13204/j.gyjz201310019
    [14]Yang Jianhui, Li Yanfei, Ding Peng, Zhao Hongbing. EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF HYBRID FIBERS REINFORCED SHOTCRETE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 101-105. doi: 10.13204/j.gyjz201308022
    [15]Yang Shuhui, Gao Danying, Zhao Jun. EXPERIMENTAL STUDY ON COMPRESSIVE STRENGTH OF THE FIBER REINFORCED CONCRETE WITH SLAG POWDER AFTER THE ACTION OF HIGH TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 101-104,119. doi: 10.13204/j.gyjz201101024
    [16]Bi Yuanzhi, Hua Yuan, Zhang Dalin, Cai Donghong, Wang Congshu, Xia Bipei, Yang Yaowen. EXPERIMENTAL STUDY ON RAISING STRENGTH AND TOUGHNESS OF CONCRETE BY MODIFIED COARSE POLYPROPYLENE-STEEL FIBERS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 85-88,114. doi: 10.13204/j.gyjz200811021
    [17]Zhang Peng, Li Qingfu, Huang Chengkui. EXPERIMENTAL STUDY ON COMPRESSIVE STRENGTH OF POLYPROPYLENE FIBER REINFORCED CEMENT STABILIZED MACADAM[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(3): 94-96. doi: 10.13204/j.gyjz200803025
    [18]Huo Jun-fang. STUDY ON THE MECHANICAL PROPERTIES OF LIGHTWEIGHT AGGREGATE CONCRETE IMPROVED BY STEEL FIBERSMETHOD[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(12): 96-99. doi: 10.13204/j.gyjz200712023
    [19]Zhao Jun, Liu Jing-yuan, Ma Zhi-ying. EXPERIMENTAL STUDY ON STRENGTHS OF STEEL FIBER REINFORCED CONCRETE WITH EARLY-AGE LOADING HISTORY[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(8): 45-49. doi: 10.13204/j.gyjz200608015
  • Cited by

    Periodical cited type(19)

    1. 唐咸远,胡贤松,罗杰,马杰灵,周长红. 改性材料及其掺量对超高性能混凝土力学性能的影响. 中国粉体技术. 2024(01): 153-160 .
    2. 宋天威,左彦峰,林洛亦,郝桐. 基于改进的半经验超高性能混凝土配合比设计方法研究. 混凝土世界. 2024(01): 39-45 .
    3. 刘娇,姜雨奇,李希东,蒋雪妮,张爱勤,王日升. 石英砂对UHPC力学性能的影响规律. 黑龙江科学. 2024(08): 10-13 .
    4. 吕毅刚,张靖航,陈火文,韩伟威,何贤良,黄敦文,彭晖. 基于粗骨料和钢纤维分布的超高性能混凝土力学性能研究及强度计算模型. 实验力学. 2024(03): 345-355 .
    5. 周立红,侯鑫鑫,王硕. 基于层次分析法分析的C150超高性能混凝土综合性能评价. 粉煤灰综合利用. 2024(03): 35-39 .
    6. 邓友生,李文杰,孟丽青,张克钦,宋虔,马二立. 粗骨料超高性能混凝土应用研究. 混凝土. 2024(07): 160-163 .
    7. 朱琦,叶力豪,蔡玮,谢文. UHPC-T梁抗弯性能试验研究与理论计算. 建筑科学与工程学报. 2023(01): 65-74 .
    8. 王志金,张义,谢恩慧. 粗骨料UHPC匀质性控制及在大跨度桥梁中的应用研究. 混凝土. 2023(02): 186-192 .
    9. 张虹宇,郑玉龙,陆春华. 两种养护制度下C100高强混凝土韧性对比试验研究. 硅酸盐通报. 2023(04): 1252-1259 .
    10. 郑苏凯. 乌江特大桥工程中几种典型混凝土配合比设计分析. 运输经理世界. 2023(09): 153-155 .
    11. 唐咸远,马杰灵,郭彬,罗杰. 粗骨料含量对预拌成品超高性能混凝土抗压强度的影响. 混凝土. 2023(06): 130-133 .
    12. 蔡晓男,林墨翰,苗梦琦. 景观构筑物UHPC制备与拼装技术. 施工技术(中英文). 2023(18): 109-112 .
    13. 周芬,陈亚曼,朱德举. FRP筋超高性能海水海砂混凝土梁抗剪性能研究. 湖南大学学报(自然科学版). 2023(11): 159-168 .
    14. 张剑锋,许金一,余旦,王激扬. 高性能细石混凝土力学性能优化试验研究. 低温建筑技术. 2022(10): 42-46 .
    15. 王志金,谢恩慧. 原材料对粗骨料UHPC力学性能的影响研究. 公路. 2022(12): 345-351 .
    16. 明阳,陈平,李玲,胡成,李青,张国志,陈飞翔. 超高性能混凝土的配制及性能研究. 非金属矿. 2021(04): 26-29 .
    17. 李伟,解传凯,姚林,孔繁盛,兰宇. 材料组成对超高性能混凝土早期性能的影响. 工程建设. 2021(10): 1-6 .
    18. 于海申,周志健,黄志昕,李富强,于长江. 大型地震工程模拟研究设施混凝土配制. 施工技术(中英文). 2021(24): 10-14 .
    19. 郭璨,唐佳军,裴长春. 含粗骨料超高性能混凝土钢管柱的承载力分析. 工程建设. 2020(10): 1-4 .

    Other cited types(18)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.4 %FULLTEXT: 7.4 %META: 90.2 %META: 90.2 %PDF: 2.4 %PDF: 2.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.0 %其他: 10.0 %其他: 1.0 %其他: 1.0 %China: 0.2 %China: 0.2 %United States: 1.0 %United States: 1.0 %[]: 0.2 %[]: 0.2 %上海: 1.9 %上海: 1.9 %东莞: 8.4 %东莞: 8.4 %临沂: 0.2 %临沂: 0.2 %乌鲁木齐: 0.7 %乌鲁木齐: 0.7 %保定: 0.2 %保定: 0.2 %信阳: 0.5 %信阳: 0.5 %兰州: 0.5 %兰州: 0.5 %北京: 8.1 %北京: 8.1 %十堰: 0.2 %十堰: 0.2 %南京: 1.9 %南京: 1.9 %南宁: 5.5 %南宁: 5.5 %厦门: 0.2 %厦门: 0.2 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 1.0 %哈尔滨: 1.0 %嘉兴: 0.2 %嘉兴: 0.2 %天水: 0.2 %天水: 0.2 %天津: 0.5 %天津: 0.5 %太原: 1.7 %太原: 1.7 %宁波: 0.7 %宁波: 0.7 %安康: 0.2 %安康: 0.2 %宜昌: 0.2 %宜昌: 0.2 %宣城: 0.2 %宣城: 0.2 %岳阳: 0.5 %岳阳: 0.5 %巴彦淖尔: 0.2 %巴彦淖尔: 0.2 %广州: 4.5 %广州: 4.5 %廊坊: 0.2 %廊坊: 0.2 %弗吉: 0.2 %弗吉: 0.2 %张家口: 1.0 %张家口: 1.0 %成都: 1.2 %成都: 1.2 %扬州: 0.7 %扬州: 0.7 %承德: 0.2 %承德: 0.2 %昆明: 2.6 %昆明: 2.6 %晋城: 0.2 %晋城: 0.2 %朔州: 0.2 %朔州: 0.2 %朝阳: 0.2 %朝阳: 0.2 %来宾: 0.2 %来宾: 0.2 %杭州: 0.7 %杭州: 0.7 %柳州: 0.7 %柳州: 0.7 %桂林: 0.7 %桂林: 0.7 %武汉: 1.4 %武汉: 1.4 %江门: 0.2 %江门: 0.2 %沈阳: 0.5 %沈阳: 0.5 %泰安: 0.2 %泰安: 0.2 %洛阳: 0.5 %洛阳: 0.5 %济南: 1.2 %济南: 1.2 %淮北: 0.5 %淮北: 0.5 %深圳: 1.0 %深圳: 1.0 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.2 %湘潭: 0.2 %湛江: 0.2 %湛江: 0.2 %滁州: 0.2 %滁州: 0.2 %漯河: 1.0 %漯河: 1.0 %濮阳: 0.2 %濮阳: 0.2 %焦作: 0.7 %焦作: 0.7 %白银: 0.2 %白银: 0.2 %盐城: 0.5 %盐城: 0.5 %石家庄: 0.7 %石家庄: 0.7 %石河子: 0.2 %石河子: 0.2 %福州: 2.6 %福州: 2.6 %绍兴: 0.2 %绍兴: 0.2 %绵阳: 0.5 %绵阳: 0.5 %美国伊利诺斯芝加哥: 0.2 %美国伊利诺斯芝加哥: 0.2 %芒廷维尤: 5.5 %芒廷维尤: 5.5 %芝加哥: 1.4 %芝加哥: 1.4 %苏州: 0.5 %苏州: 0.5 %襄阳: 0.5 %襄阳: 0.5 %西宁: 3.6 %西宁: 3.6 %西安: 1.2 %西安: 1.2 %贵阳: 1.4 %贵阳: 1.4 %运城: 2.4 %运城: 2.4 %连云港: 0.5 %连云港: 0.5 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %重庆: 0.7 %重庆: 0.7 %铁岭: 0.7 %铁岭: 0.7 %镇江: 1.2 %镇江: 1.2 %长沙: 2.1 %长沙: 2.1 %青岛: 1.4 %青岛: 1.4 %驻马店: 0.5 %驻马店: 0.5 %黔南: 0.5 %黔南: 0.5 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他其他ChinaUnited States[]上海东莞临沂乌鲁木齐保定信阳兰州北京十堰南京南宁厦门合肥呼和浩特哈尔滨嘉兴天水天津太原宁波安康宜昌宣城岳阳巴彦淖尔广州廊坊弗吉张家口成都扬州承德昆明晋城朔州朝阳来宾杭州柳州桂林武汉江门沈阳泰安洛阳济南淮北深圳湖州湘潭湛江滁州漯河濮阳焦作白银盐城石家庄石河子福州绍兴绵阳美国伊利诺斯芝加哥芒廷维尤芝加哥苏州襄阳西宁西安贵阳运城连云港邯郸郑州重庆铁岭镇江长沙青岛驻马店黔南齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (376) PDF downloads(11) Cited by(37)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return