Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
GUO Qiusheng. CAPILLARY WATER ABSORPTION CHARACTERISTICS OF CONCRETE AND ITS RELATIONSHIP WITH PORE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 119-123. doi: 10.13204/j.gyjz202003020
Citation: GUO Qiusheng. CAPILLARY WATER ABSORPTION CHARACTERISTICS OF CONCRETE AND ITS RELATIONSHIP WITH PORE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 119-123. doi: 10.13204/j.gyjz202003020

CAPILLARY WATER ABSORPTION CHARACTERISTICS OF CONCRETE AND ITS RELATIONSHIP WITH PORE STRUCTURE

doi: 10.13204/j.gyjz202003020
  • Received Date: 2019-04-11
  • In order to better understand the capillary water absorption characteristics of concrete, the influence of different types of concrete, steel fiber content, and curing conditions on the solution absorption amount were studied in the paper. The capillary water absorption coefficients were also obtained. Moreover, the relationship between pore structure and capillary water absorption coefficient was analyzed. The results showed that the two stages, 15~180 min and 180~480 min, of solution absorption amount of different types of concrete (damage and undamaged) were linear with t1/2. The capillary water absorption coefficient of ultra-high performance concrete (UHPC) was much smaller than that of high-performance concrete (HPC). With the increase of the steel fiber content, the solution absorption amount of the first stage and the capillary water absorption coefficients of UHPC both increased. Under the influence of rehydration, the solution absorption amount of UHPC specimens cured in water was slightly larger than that cured in the room condition at the age of 720 d. The capillary water absorption coefficient was mainly affected by the pore content in the range of 100~3 nm, and the capillary water absorption coefficient in the first stage increased with the increase of its content. Considering the influence of porosity, the cumulative capillary water absorption height was calculated, and the calculation results were in accordance with the actual situation.
  • 冷发光, 周永祥, 王祖琦, 等. 高性能混凝土发展与应用[J]. 建筑科学, 2018, 34(9):76-81.
    姬永生, 袁迎曙. 干湿循环作用下氯离子在混凝土中的侵蚀过程分析[J]. 工业建筑, 2006, 36(12):16-19.
    朱桂红, 田砾, 赵铁军, 等. 氯离子侵蚀混凝土有机硅防水处理有效性研究[J]. 建筑科学, 2007, 23(8):79-82.
    李洪马, 潘志华, 陈阳义, 等. 水泥基材料水分传输的影响因素研究[J]. 混凝土, 2015(9):97-100.
    贺智敏, 龙广成, 谢友均, 等. 蒸养混凝土的毛细吸水特性研究[J]. 建筑材料学报, 2012, 15(2):190-195.
    刘世, 刘海卿, 王锦力. 煤矸石掺量对混凝土毛细吸水特性影响的试验研究[J]. 硅酸盐通报, 2017, 36(12):4313-4318.
    鲁良辉. 多添加环境下混凝土的毛细吸水试验研究[J]. 科技通报, 2016, 32(10):98-102.
    MARTYS N S, FERRARIS C F. Capillary Transport in Mortars and Concrete[J]. Cement and Concrete Research, 1997, 27(5):747-760.
    HALL C.Water Sorptivity of Mortars and Concrete:a Review[J]. Magazine of Concrete Research,1989, 41:51-61.
    马志鸣, 赵铁军, 朱方之, 等. 掺硅烷乳液制备整体防水混凝土的抗冻性试验研究[J]. 新型建筑材料, 2012, 39(7):53-55.
    邱继生, 郑娟娟, 关虓, 等. 冻融损伤下钢纤维煤矸石混凝土的毛细吸水性能[J]. 科学技术与工程, 2018, 18(16):256-261.
    LIU, WANG D M, SONG S M, et al, Research on Durability and Micro Structure of High Volume Fine Mineral Mixture of Reactive Powder Concrete[J]. Journal of Wuhan University of Technology, 2008, 30(11):54-57.
    孙世国, 鲁艳朋. 超高性能混凝土国内外研究进[J]. 科学技术与工程, 2018, 18(20):184-199.
    王月, 安明喆, 余自若, 等.活性粉末混凝土力学性能研究现状[J]. 混凝土, 2013(12):21-26.
    WANG Y, AN M, YU Z, et al. Impacts of Various Factors on the Rehydration of Cement-Based Materials with a Low Water-Binder Ratio Using Mathematical Models[J]. Construction and Building Materials, 2016, 125:160-167.
  • Relative Articles

    [1]HUANG Zhenyu, LIN Gan, HUANG Xinxiong, LI Weiwen, SUI Lili, Youtam. Bond-Slip Constitutive Model and Numerical Simulation of Shaped Steel Embedded in UHPC[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 143-152. doi: 10.13204/j.gyjzG21092803
    [2]LIU Lei, HE Zhen, WANG Peng, CAI Xinhua, MENG Fanbing, LUO Tao. Experimental Research on Mechanical Properties of UHPC-RC Composite Columns Under Eccentric Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 153-160. doi: 10.13204/j.gyjzG22051009
    [3]HUANG Jing, MO Shixu, CHAI Longjie, ZHENG Yan. Calculation Method of Ultimate Bearing Capacity of UHPC Composite Beam with Narrow Steel Box[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 48-56,143. doi: 10.13204/j.gyjzG22082506
    [4]HU Li, LI Zhiyuan, YANG Jiaqi, WANG Yuegui, LI Yingchun, HOU Pumin. Finite Strip Analysis of Properties of UHPC Members Reinforced with High Strength Steel Bars[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(3): 115-121. doi: 10.13204/j.gyjzG22031112
    [5]LIU Zidan, JIAO Wenshuai, CHENG Zhan, DU Guofeng. Research on the Axial Compression Behavior of Steel-Reinforced Ultra-High Performance Concrete-Filled Stainless Steel Tubular Columns[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 17-27. doi: 10.13204/j.gyjzG22072605
    [6]WANG Ning, YAN Jing-liang, LIU Xiao-gang, YUE Qing-rui, ZHENG Ming-zhao. Research on Shear Connection Performance of Prefabricated Steel-Concrete Composite Beams[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 121-128. doi: 10.13204/j.gyjzg22030601
    [7]GUO Xiaosong, ZOU Chunxia, XUE Huijun, XU Deru, SUN Haoran, DING Feng. Mechanical Properties and Pore Characteristic of Alkali-Activated Aeolian Sand Concrete[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 162-168. doi: 10.13204/j.gyjzG20122906
    [8]XUE Huijun, ZHENG Jianting, ZOU Chunxia, HOU Yufeng, LIU Xin. Fractal Characteristics of Pore Structure of Aeolian Sand Pumice Concrete Subjected to Freeze-thaw Cycles[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 187-193,142. doi: 10.13204/j.gyjzG21090911
    [9]YAO Junsuo, DENG Zongcai. A CALCULATION METHOD OF AXIAL COMPRESSIVE BEARING CAPACITY FOR SHORT SQUARE COLUMNS OF ULTRA-HIGH PERFORMANCE CONCRETE CONFINED BY HIGH-STRENGTH STIRRUPS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 26-31. doi: 10.13204/j.gyjzG19111803
    [10]MIAO Jianbao, TONG Hanyuan, XU Bing, LI Lifeng. ANALYSIS OF SHEAR CAPACITY OF UHPC GIRDERS BASED ON THE MCFT THEORY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 60-67,18. doi: 10.13204/j.gyjzG20052801
    [11]WU Chen, CHEN Kedan, LIN Shangshun, DING Feng, LI Daosong. EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF ULTRA-HIGH PERFORMANCE CONCRETE UNDER NORMAL TEMPERATURE CURING[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 140-145. doi: 10.13204/j.gyjzG20111009
    [12]LIANG Xuejiao, ZHENG Hui, XUAN Shuaifei, FANG Zhi. EXPERIMENTAL STUDY ON FLEXURAL PROPERTIES FOR SEGMENTAL PRECAST GIRDERS OF ULTRA-HIGH PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 30-36,72. doi: 10.13204/j.gyjzG19121807
    [13]XIA Jingliang, CAO Changwei, SUN Jun, GUAN Qingfeng, ZHOU Yongxiang. EFFECT OF CURING REGIMES ON CHLORIDION PENETRATION OF WHITE HIGH-STRENGTH CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 176-180,8. doi: 10.13204/j.gyjzG20072207
    [14]OUYANG Lijun, QIAN Peng, GAO Wanyang, DING Bin, WANG Qing. EFFECT OF CURING SYSTEM ON RESIDUAL MECHANICAL PROPERTIES OF ULTRA-HIGH PERFORMANCE CONCRETE EXPOSED TO ELEVATED TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 92-100. doi: 10.13204/j.gyjzG201905290010
    [15]XUAN Shuaifei, ZHENG Hui, LIANG Xuejiao. RESEARCH ON ANCHORAGE LENGTH OF STEEL STRAND EMBEDDED IN ULTRA-HIGH-PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 114-118,146. doi: 10.13204/j.gyjz202003019
    [16]YANG Yibo, YUE Xiaodong, ZHENG Fubin, LIU Fucai, GUO Wenying, WANG Hengchang. RESEARCH ON SEWAGE CORROSION RESISTANCE OF ULTRA HIGH PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 82-87. doi: 10.13204/j.gyjz202004015
    [18]Fan Hong, Fu Yandi, Zhao Tiejun. RESEARCH ON CARBONATION AND CHLORIDE PROFILES OF CONCRETE AFTER 21 YEARS OF EXPOSURE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(5): 14-18,38. doi: 10.13204/j.gyjz201105004
    [19]Ding Zhu, Xing Feng, Yin Hui. PROPERTIES VARIATION OF CONCRETE ATTACKED BY ACIDIC SOLUTIONS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 96-100. doi: 10.13204/j.gyjz200905021
  • Cited by

    Periodical cited type(6)

    1. 田威,郭健,王文奎,张景生,王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究. 材料导报. 2025(03): 85-91 .
    2. 蒋建华,卢宸宸,师效哲,陈林林,周家冰. 纳米SiO_2改性粉煤灰混凝土力学性能及吸水特性研究. 建筑科学与工程学报. 2024(03): 10-17 .
    3. 肖前慧,师姗姗,邱继生,李蕾蕾,武哲. 冻融环境下再生混凝土毛细吸水特性研究. 冰川冻土. 2024(03): 909-918 .
    4. 师现营,师苏傲特,李松. 掺淤砂混凝土力学行为与微观孔结构特征研究. 人民黄河. 2022(06): 139-143 .
    5. 董伟,付前旺,刘鑫,薛慧君,肖阳. 毛细作用下风积沙混凝土水分和氯离子传输特性试验. 沈阳建筑大学学报(自然科学版). 2021(04): 716-723 .
    6. 梁晓前,黄榜彪,黄秉章,杨雷铭,孙文贤,林通敏,任志强,李有的,刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究. 材料导报. 2021(S2): 200-204 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 3.9 %FULLTEXT: 3.9 %META: 95.1 %META: 95.1 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.7 %其他: 12.7 %Canton: 0.5 %Canton: 0.5 %Central District: 0.5 %Central District: 0.5 %China: 1.0 %China: 1.0 %United States: 1.5 %United States: 1.5 %上海: 2.0 %上海: 2.0 %东莞: 1.5 %东莞: 1.5 %伦敦: 0.5 %伦敦: 0.5 %北京: 5.9 %北京: 5.9 %南京: 2.9 %南京: 2.9 %南宁: 4.9 %南宁: 4.9 %咸宁: 2.5 %咸宁: 2.5 %唐山: 1.0 %唐山: 1.0 %喀什: 0.5 %喀什: 0.5 %天津: 1.0 %天津: 1.0 %太原: 1.0 %太原: 1.0 %安康: 0.5 %安康: 0.5 %宜昌: 0.5 %宜昌: 0.5 %宿州: 0.5 %宿州: 0.5 %延安: 0.5 %延安: 0.5 %张家口: 0.5 %张家口: 0.5 %徐州: 0.5 %徐州: 0.5 %成都: 0.5 %成都: 0.5 %扬州: 0.5 %扬州: 0.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 1.0 %朝阳: 1.0 %来宾: 0.5 %来宾: 0.5 %杭州: 1.0 %杭州: 1.0 %格兰特县: 0.5 %格兰特县: 0.5 %桂林: 1.0 %桂林: 1.0 %武汉: 0.5 %武汉: 0.5 %沈阳: 0.5 %沈阳: 0.5 %泰州: 0.5 %泰州: 0.5 %济南: 1.0 %济南: 1.0 %深圳: 1.0 %深圳: 1.0 %温州: 0.5 %温州: 0.5 %湖州: 0.5 %湖州: 0.5 %漯河: 3.9 %漯河: 3.9 %濮阳: 1.0 %濮阳: 1.0 %石家庄: 0.5 %石家庄: 0.5 %福州: 2.0 %福州: 2.0 %芒廷维尤: 17.6 %芒廷维尤: 17.6 %芝加哥: 2.0 %芝加哥: 2.0 %苏州: 0.5 %苏州: 0.5 %西宁: 2.9 %西宁: 2.9 %西安: 2.0 %西安: 2.0 %贵阳: 1.0 %贵阳: 1.0 %运城: 4.9 %运城: 4.9 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.5 %郑州: 0.5 %重庆: 2.9 %重庆: 2.9 %银川: 0.5 %银川: 0.5 %长沙: 1.0 %长沙: 1.0 %阿布奎基: 0.5 %阿布奎基: 0.5 %青岛: 2.5 %青岛: 2.5 %黄石: 1.0 %黄石: 1.0 %其他CantonCentral DistrictChinaUnited States上海东莞伦敦北京南京南宁咸宁唐山喀什天津太原安康宜昌宿州延安张家口徐州成都扬州晋城朝阳来宾杭州格兰特县桂林武汉沈阳泰州济南深圳温州湖州漯河濮阳石家庄福州芒廷维尤芝加哥苏州西宁西安贵阳运城邯郸郑州重庆银川长沙阿布奎基青岛黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (193) PDF downloads(2) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return