Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Cheng Xiaohui Yang Zuan Li Meng Guo Hongxian, . MICROBIAL MODIFIED GEOMATERIALS: A METHODOLOGY REVIEW[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 1-7. doi: 10.13204/j.gyjz201507001
Citation: Cheng Xiaohui Yang Zuan Li Meng Guo Hongxian, . MICROBIAL MODIFIED GEOMATERIALS: A METHODOLOGY REVIEW[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 1-7. doi: 10.13204/j.gyjz201507001

MICROBIAL MODIFIED GEOMATERIALS: A METHODOLOGY REVIEW

doi: 10.13204/j.gyjz201507001
  • Publish Date: 2015-07-20
  • Microbial induced carbonate precipitation,an advance of biomineralization has become a focus of many geotechnical and material studies. The bio-mediated process differs from the pure chemical reaction processes for carbonate production as its reaction speed and induced carbonate properties can be controlled for the cementation and sealing purposes in civil engineering. Under certain circumstances such microbial induced carbonate can be an alternative solution to the cement,lime and epoxy materials. Chinese researchers have carried out a lot of work for the innovative technology,mainly dealing with its engineering applications. However,fundamental research on biochemo- physical mechanism underlying the technology is inadequate. The paper was based up on reviewing different fundamental mechanisms in geo-material porous media reported in publications both at home and abroad,as well as to promote the fundamental studies of the newly emerging subject.
  • Relative Articles

    [1]LIN Wenbin, WANG Bin, GAO Yupeng, KE Jintao, CAO Shenggen, KONG Qiuping. Experimental Study on Disintegration of Strongly Weathered Granular Granite Cemented by MICP in the Seawater Environment[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 1-9. doi: 10.3724/j.gyjzG24031816
    [2]LI Tao, LAI Xiaoying, HUANG Hao, YANG Hanqing, DENG Bofan, WANG Yajun. Study on Crystallization Effect of New Immobilized Materials[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 84-90. doi: 10.13204/j.gyjzG21112407
    [3]LIU Zhong, XIAO Shuiming, LIU Feifei, LONG Wenliang, ZHANG Minxia. Experimental Study on Influence Factors of Anti-Wind Erosion and Anti-Dust for Construction Debris Cemented by MICP[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 71-78. doi: 10.13204/j.gyjzG22070609
    [4]WANG Bukang, JIA Cangqin, WANG Guihe, ZHANG Haonan. Study on Cementation Effect of Tailing Sand by Magnesium Oxide Combined with Microorganism or by MICP[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 79-83. doi: 10.13204/j.gyjzG21022609
    [5]WANG Yanxing, LI Chi, GAO Liping, QIN Xiao. DETERMINATION ON PORE STRUCTURE OF MICROBIAL INDUCED MINERALIZATION MATERIALS IN SALT ENVIRONMENT BY NMR[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 1-7. doi: 10.13204/j.gyjzG19092502
    [13]Yang Zuan Cheng Xiaohui, . EXPERIMENTAL STUDY OF DETERIORATED HISTORIC MASONRY STRUCTURES REINFORCED BY MICROBIAL GROUTING METHOD[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 48-53. doi: 10.13204/j.gyjz201507010
    [14]Guo Hongxian Zhang Yue Cheng Xiaohui Ma Ruinan, . CRACK REPAIR AND SURFACE DEPOSITION OF CEMENT-BASED MATERIALS BY MICP TECHNOLOGY[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 36-41. doi: 10.13204/j.gyjz201507008
    [15]Zhang Hechao, Guo Hongxian, Li Meng, Cheng Xiaohui. EXPERIMENTAL RESEARCH OF MICROBIAL-INDUCED CLOGGING IN SANDS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 139-142. doi: 10.13204/j.gyjz201501028
    [16]Zhang Shuai Cheng Xiaohui, . NUMERICAL SIMULATION AND EXPERIMENTAL RESEARCH ON STABILIZATION OF LIQUEFIABLE SAND FOUNDATION BY MICP[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 23-27. doi: 10.13204/j.gyjz201507005
    [17]Zhang Yue, Guo Hongxian, Cheng Xiaohui, Li Meng. FIELD EXPERIMENT OF MICROBIAL INDUCED CARBONATE PRECIPITATION TECHNOLOGY IN LEAKAGE TREATMENT OF A BASEMENT[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 138-143. doi: 10.13204/j.gyjz201312026
    [18]Jin Zuquan, Zhao Tiejun, Sun Wei. STUDY ON DAMAGE TO CONCRETES ATTACKED BY SULFATES[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(3): 90-93. doi: 10.13204/j.gyjz200803024
  • Cited by

    Periodical cited type(29)

    1. 王巍智. 硫铝酸盐水泥砂浆的MICP修复试验研究. 河南科技. 2024(04): 79-87 .
    2. 林文彬,王彬,高玉朋,柯劲涛,曹生根,孔秋平. 海水环境下微生物诱导碳酸钙沉淀胶结散体状强风化花岗岩崩解试验研究. 工业建筑. 2024(09): 1-9 . 本站查看
    3. 兰润扬,林锴,唐朝生,章君政,施斌. 基于高密度电阻率成像技术的MICP浆液入渗过程监测研究. 高校地质学报. 2024(05): 577-584 .
    4. 周一君,王硕,王洪涛. MICP固化风积沙的波速试验测试. 华北理工大学学报(自然科学版). 2023(03): 42-49 .
    5. 焦辰江,由爽,程晓辉,王洪涛. 沙漠砂微生物注浆钙离子追踪数值分析. 建筑材料学报. 2022(08): 806-813 .
    6. 熊辉辉,崔猛,吕苏颖,郑俊杰,符晓. 不同植物源脲酶的活性与钙化变量试验研究. 南昌工程学院学报. 2022(06): 12-17+58 .
    7. 岳建伟,黄轩嘉,邢旋旋,赵丽敏,孔庆梅,杨雪,朱耀冬,张建伟. 基于MICP改良黄河泥沙颗粒级配的试验研究. 工程科学与技术. 2021(03): 89-98 .
    8. 岳建伟,李嘉乐,刘东鹭,王思远,邢旋旋,陈颖. MICP技术对遗址土开裂抑制作用的试验探究. 防灾减灾工程学报. 2021(03): 455-462 .
    9. 肖维民,傅业姗,朱占元,吴志友. 微生物诱导碳酸钙沉积胶结岩石节理的抗剪强度特性试验研究. 岩石力学与工程学报. 2021(S1): 2750-2759 .
    10. 胡其志,刘彻德,庄心善. 反硝化微生物固化砂土的试验研究. 湖北工业大学学报. 2021(04): 46-51 .
    11. 杜强,薛嘉麟,李永. 微生物固化风积沙力学特性及细观模拟研究. 内蒙古农业大学学报(自然科学版). 2021(06): 64-69 .
    12. 王鹏翱,高利平,王晓荣. 阿尔寨石窟红砂岩风化土的微生物矿化试验研究. 内蒙古工业大学学报(自然科学版). 2021(06): 468-474 .
    13. 何稼,吴敏,孟浩,亓永帅,高玉峰. 生物固土用于防风固沙的研究进展. 高校地质学报. 2021(06): 687-696 .
    14. 胡其志,刘彻德,丁志刚. 微生物灌浆加固边坡的机理及稳定性研究. 湖南交通科技. 2021(04): 6-10 .
    15. 徐宏殷,练继建,闫玥. 多试验因素耦合下MICP固化砂土的试验研究. 天津大学学报(自然科学与工程技术版). 2020(05): 517-526 .
    16. 张宽,唐朝生,刘博,张天生,程青,施斌. 基于新型单相MICP技术改性黏性土力学特性的试验研究. 工程地质学报. 2020(02): 306-316 .
    17. 刘志明,孙益成,冯清鹏,彭劼. MICP胶结液中尿素过量的影响研究. 防灾减灾工程学报. 2020(04): 574-580 .
    18. 蔡红,肖建章,王子文,李洁. 基于MICP技术的淤泥质土固化试验研究. 岩土工程学报. 2020(S1): 249-253 .
    19. 杨丰,何稼,亓永帅,汤昕怡. 大豆脲酶基本特性与粉质砂土的固化研究. 河南科学. 2019(01): 112-118 .
    20. 谢约翰,唐朝生,尹黎阳,吕超,蒋宁俊,施斌. 纤维加筋微生物固化砂土的力学特性. 岩土工程学报. 2019(04): 675-682 .
    21. 彭劼,温智力,刘志明,孙益成,冯清鹏,何稼. 微生物诱导碳酸钙沉积加固有机质黏土的试验研究. 岩土工程学报. 2019(04): 733-740 .
    22. 陈洁,雷学文,黄泽彬,徐骏,吕建根,邱剑辉. 生态边坡稳定机制研究综述. 安徽农业大学学报. 2019(02): 282-288 .
    23. 冷勐,杨建贵,徐小平,彭劼,崔起航,李杰. 微生物诱导碳酸钙沉积技术中的胶结液配方试验研究. 河南科学. 2019(10): 1627-1633 .
    24. 梁仕华,牛九格,房采杏,戴君. 微生物固化砂土的研究进展. 工业建筑. 2018(07): 1-9+15 . 本站查看
    25. 许朝阳,杨贺,黄建璋,李章彦,王海波. 生物修复Cu~(2+)、Pb~(2+)污染土的稳定性. 工业建筑. 2018(07): 33-37 . 本站查看
    26. 周锋. 铁细菌诱导物在粉土中沉积效果的试验研究. 山西建筑. 2018(21): 75-76 .
    27. 彭邦阳,赵志峰. 表面入渗法诱导碳酸钙沉积加固海相粉土研究. 林业工程学报. 2018(05): 136-141 .
    28. 陈彦瑞,雷学文,孟庆山,龚志伟,徐建平. 自源型铁细菌固化玄武岩残积土的室内试验研究. 工业建筑. 2017(09): 95-100 . 本站查看
    29. 陈彦瑞,雷学文,魏桃员,徐建平,孟庆山. 微生物诱导碳酸盐沉积技术固化红棕色玄武岩残积土的试验研究. 科学技术与工程. 2017(26): 120-126 .

    Other cited types(41)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.7 %FULLTEXT: 15.7 %META: 84.3 %META: 84.3 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.3 %其他: 7.3 %China: 0.6 %China: 0.6 %Odesa: 5.1 %Odesa: 5.1 %北京: 21.9 %北京: 21.9 %南京: 7.9 %南京: 7.9 %南昌: 0.6 %南昌: 0.6 %台北: 2.2 %台北: 2.2 %喀什: 1.1 %喀什: 1.1 %嘉兴: 0.6 %嘉兴: 0.6 %天津: 5.1 %天津: 5.1 %安顺: 0.6 %安顺: 0.6 %宣城: 0.6 %宣城: 0.6 %常州: 0.6 %常州: 0.6 %广州: 0.6 %广州: 0.6 %张家口: 2.2 %张家口: 2.2 %徐州: 0.6 %徐州: 0.6 %成都: 0.6 %成都: 0.6 %扬州: 2.2 %扬州: 2.2 %昆明: 0.6 %昆明: 0.6 %杭州: 0.6 %杭州: 0.6 %武汉: 0.6 %武汉: 0.6 %温州: 0.6 %温州: 0.6 %漯河: 5.1 %漯河: 5.1 %福州: 1.7 %福州: 1.7 %芒廷维尤: 17.4 %芒廷维尤: 17.4 %芝加哥: 1.7 %芝加哥: 1.7 %衢州: 0.6 %衢州: 0.6 %西宁: 6.2 %西宁: 6.2 %西安: 1.7 %西安: 1.7 %贵阳: 0.6 %贵阳: 0.6 %郑州: 0.6 %郑州: 0.6 %鄂州: 0.6 %鄂州: 0.6 %重庆: 0.6 %重庆: 0.6 %长沙: 1.1 %长沙: 1.1 %其他ChinaOdesa北京南京南昌台北喀什嘉兴天津安顺宣城常州广州张家口徐州成都扬州昆明杭州武汉温州漯河福州芒廷维尤芝加哥衢州西宁西安贵阳郑州鄂州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (324) PDF downloads(400) Cited by(70)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return