Huang Hong, Yang Chao, Zhang Ange, Chen Mengcheng. EXPERIMENTAL AND THEORETICAL STUDY ON CONCRETE-FILLED CIRCULAR STEEL TUBULAR COLUMNS SUBJECTED TO ECCENTRIC LOADING OF UNEQUAL END-MOMENT[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(11): 120-124,109. doi: 10.13204/j.gyjz201111026
Citation:
Huang Hong, Yang Chao, Zhang Ange, Chen Mengcheng. EXPERIMENTAL AND THEORETICAL STUDY ON CONCRETE-FILLED CIRCULAR STEEL TUBULAR COLUMNS SUBJECTED TO ECCENTRIC LOADING OF UNEQUAL END-MOMENT[J]. INDUSTRIAL CONSTRUCTION , 2011, 41(11): 120-124,109. doi: 10.13204/j.gyjz201111026
Huang Hong, Yang Chao, Zhang Ange, Chen Mengcheng. EXPERIMENTAL AND THEORETICAL STUDY ON CONCRETE-FILLED CIRCULAR STEEL TUBULAR COLUMNS SUBJECTED TO ECCENTRIC LOADING OF UNEQUAL END-MOMENT[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(11): 120-124,109. doi: 10.13204/j.gyjz201111026
Citation:
Huang Hong, Yang Chao, Zhang Ange, Chen Mengcheng. EXPERIMENTAL AND THEORETICAL STUDY ON CONCRETE-FILLED CIRCULAR STEEL TUBULAR COLUMNS SUBJECTED TO ECCENTRIC LOADING OF UNEQUAL END-MOMENT[J]. INDUSTRIAL CONSTRUCTION , 2011, 41(11): 120-124,109. doi: 10.13204/j.gyjz201111026
EXPERIMENTAL AND THEORETICAL STUDY ON CONCRETE-FILLED CIRCULAR STEEL TUBULAR COLUMNS SUBJECTED TO ECCENTRIC LOADING OF UNEQUAL END-MOMENT
Received Date: 2011-06-10
Publish Date:
2011-11-20
Abstract
A total of 6 concrete-filled circular steel tubular columns were tested under eccentric load of unequal end-moment.The primary parameters in the tests were end-moment ratio and max eccentricity.The results show that all the specimens were destroyed due to the instability ultimately,end-moment ratio has important effect on the failure modes of the specimens;the greater the end-moment ratio and the eccentricity ratio,the smaller the rigidity and the bearing capacity.On this basis,the behavior of concrete-filled circular steel tubular columns under eccentric loading of unequal end-moments is analyzed by finite element method.The calculated results agree well with the experimental results.
References
[2] 刘殿忠.在不等端弯矩作用下钢管混凝土偏压柱稳定承载力的计算[J].哈尔滨建筑工程学院学报,1986,19(1):18-25.
韩林海.钢管混凝土结构理论与实践[M].2版:北京:科学出版社,2007.
[3] 蔡绍怀,顾维平.弯矩分布图形对钢管混凝土无侧移柱承载能力的影响[J].建筑结构学报,1990,11(5):1-8.
[4] Kilpatrick Andrew E, Rangan B Vijaya. Tests on High-Strength?Concrete-Filled Steeltubular Columns[J].ACI Structural Journal, 1999,96(2):268-274.
[5] 丁发兴,余志武,欧进萍.不等端弯矩圆钢管混凝土偏压柱力学性能研究[J].土木工程学报,2009,42(9):47-53.
[6] 刘威.钢管混凝土局部受压时的工作机理研究[D].福州:福州大学,2005.
[7] American Concrete Institute;Building Code Requirements for?Structural Concrete and Commentary(ACI-318-02)[S].Farmington Hills, Detroit, USA,2002.?
Relative Articles
[1] CHEN Peng, SUN Shu. Finite Element Analysis and Bearing Capacity Calculation of Combined Cruciform CFST Columns [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 35-40,117. doi: 10.13204/j.gyjzG21022307
[2] GE Yipeng, XIONG Xueyu. FINITE ELEMENT ANALYSIS OF BENDING TEST FOR PRESTRESSED CONCRETE DOUBLE TEES [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 21-27,52. doi: 10.13204/j.gyjzg21061511
[3] CAI Jianguo, DU Caixia, ZHANG Peng, ZHANG Qian, FENG Jian. RESEARCH ON ECCENTRIC COMPRESSION PERFORMANCE OF 3D PRINTED CONCRETE WALL [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 29-35. doi: 10.13204/j.gyjzG21020323
[4] Guo Lixiang Li Ting Yang Jian Huang Hong, . EXPERIMENT AND FINITE-ELEMENT CALCULATION STUDY ON CONCRETE-FILLED DOUBLE SKIN STEEL TUBULAR MEMBERS UNDER COMPRESSION AND TORSION [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 148-152. doi: 10.13204/j.gyjz201507030
[5] Chen Zongping, Zhong Ming, Chen Yuliang. EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF CONCRETE-FILLED OPENING HOLE DAMAGED STEEL TUBULAR MEMBERS [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 121-127. doi: 10.13204/j.gyjz201302025
[6] Xu Zhouyuan, Zhao Renda, Zhan Yulin. FEM ANALYSIS AND PARAMETER STUDY OF THE STEEL-CONCRETE COMPOSITE SLAB WITH PBL SHEAR CONNECTOR [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 104-109,6. doi: 10.13204/j.gyjz201311024
[7] Zou Linbin, Jiang Haibo, Wei Chungen, Yin Wu, Yang Min. FINITE-ELEMENT ANALYSIS OF SHEAR BEHAVIOR OF JOINT STRUCTURE IN SEGMENTAL CONSTRUCTION CONCRETE BOX GIRDER [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(11): 92-95. doi: 10.13204/j.gyjz201111020
[8] Zhang Jicheng, Shen Zuyan, Zhou Haijun. NONLINEAR FEM ANALYSIS OF SEISMIC BEHAVIOR OF L-SHAPED CONCRETE-FILLED STEEL TUBULAR COLUMN [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(7): 85-90. doi: 10.13204/j.gyjz201007022
[9] Wang Quanfeng, Shen Zhangchun, Huang Yihui, Yang Yongxin. EXPERIMENTAL STUDY OF HRB500 REINFORCEMENT CONCRETE COLUMNS UNDER MONOTONOUS ECCENTRIC COMPRESSION [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(7): 83-86. doi: 10.13204/j.gyjz200907023
[10] Wang Weihua, Tao Zhong. FE ANALYSIS OF CIRCULAR CFST COLUMNS IN FIRE [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 28-32. doi: 10.13204/j.gyjz200904007
[11] Liu Wenlian, Liu Zheng, Liu Pengcheng. EXPRIMENTAL STUDY ON THE MECHANICAL PROPERTIES OF CONCRETE-FILLED CIRCULAR STEEL TUBE SHORT COLUMNS UNDER COMPRESSION [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(8): 78-82. doi: 10.13204/j.gyjz200808020
[12] Huang Silin, Liang Xingwen, Yang Kejia. SIMULATION ANALYSIS ON BASIC BEHAVIOR OF HIGH?STRENGTH CONCRETE SHEAR WALL [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(3): 38-41,71. doi: 10.13204/j.gyjz200703011
[13] Zhou Jing, Cai Jian. ELASTOPLASTIC BEARING CAPACITY ANALYSIS FOR CONCRETE-FILLED STEEL TUBE T-SHAPED COLUMNS [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 87-90. doi: 10.13204/j.gyjz200605023
[14] Huang Hong Tao Zhong, . MECHANISM OF CONCRETE-FILLED DOUBLE-SKIN STEEL TUBULAR COLUMNS (CHS INNER AND CHS OUTER) SUBJECTED TO AXIAL COMPRESSION [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(11): 11-14,36. doi: 10.13204/j.gyjz200611003
[15] Wang Xikang, Yang Guangzhi. THE EFFECT OF MASS ECCENTRICITY OF MACHINE AND FOUNDATION ON NATURAL FREQUENCIES [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(12): 51-53. doi: 10.13204/j.gyjz200412014
[16] Ma Xinbo, Zhang Sumei. INTRODUCTION AND COMPARISON OF CALCULATION METHODS OF THE STIFFNESS OF CONCRETE-FILLED CIRCULAR STEEL TUBES IN DIFFERENT CODES [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(2): 75-78. doi: 10.13204/j.gyjz200402022
[17] Ma Xinbo, Zhang Sumei, Sun Yuping. INTRODUCTION TO AIJ METHOD OF LOAD-CARRYING CAPACITY OF CONCRETE-FILLED CIRCULAR STEEL TUBES [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(2): 69-74. doi: 10.13204/j.gyjz200402021
[18] Ma Xinbo, Zhang Sumei. INTRODUCTION TO EUROCODE 4 METHOD OF LOAD-CARRYING CAPACITY OF CONCRETE-FILLED CIRCULAR STEEL TUBES [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(2): 65-68,90. doi: 10.13204/j.gyjz200402020
[19] Ma Xinbo, Zhang Sumei. INTRODUCTION TO AISC-LRFD METHOD OF LOAD-CARRYING CAPACITY OF CONCRETE-FILLED CIRCULAR STEEL TUBES [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(2): 61-64. doi: 10.13204/j.gyjz200402019
[20] Lu Hui, Han Linhai. CALCULATIONS OF FLEXURAL STIFFNESS OF CONCRETE-FILLED STEEL TUBES WITH CIRCULAR SECTIONS [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(1): 1-5. doi: 10.13204/j.gyjz200401001
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 2025-05 2025-06 0 2 4 6 8
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 20.0 % FULLTEXT : 20.0 % META : 80.0 % META : 80.0 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 44.0 % 其他 : 44.0 % 北京 : 12.0 % 北京 : 12.0 % 台州 : 2.0 % 台州 : 2.0 % 张家口 : 8.0 % 张家口 : 8.0 % 芒廷维尤 : 28.0 % 芒廷维尤 : 28.0 % 西宁 : 4.0 % 西宁 : 4.0 % 重庆 : 2.0 % 重庆 : 2.0 % 其他 北京 台州 张家口 芒廷维尤 西宁 重庆