Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Zhu Chenfei, Liu Xiaojun, Li Wenzhe, Wu Yonggen, Liu Qingtao. STUDY OF FREEZE-THAW DURABILITY AND DAMAGE MODEL OFHYBRID FIBER CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 10-14. doi: 10.13204/j.gyjz201502003
Citation: Li Wenli, Zhang He, Li Zhonghua, Ba Hengjing. EFFECT OF ADMIXTURE AND AIR-ENTRAINING AGENT ON SALF-FROST SCALING RESISTANCE OF CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 12-15. doi: 10.13204/j.gyjz201006004

EFFECT OF ADMIXTURE AND AIR-ENTRAINING AGENT ON SALF-FROST SCALING RESISTANCE OF CONCRETE

doi: 10.13204/j.gyjz201006004
  • Received Date: 2010-03-12
  • Publish Date: 2010-06-20
  • Depending on the environment coupling of salts and freeze-thaw cycles,the test method of single-side saltfrost was selected and improvement of mineral admixture and air-entraining agent on salt-frost scaling resistance of concrete was researched. The results show that the scaled mass and the dynamic modulus of elasticity loss rate of the concret are reduced as compared with control concrete by adding mineral admixture and air entraining agent into concrete. The salt-frost scaling resistance of concrete is improved. The salt-frost scaling resistance of concrete mixed with ground slag is better than flyash concrete. Compared with the concrete of other proportion the salt-frost resistance of concrete with fly ash,silica fume and air-entraining agent is better. So the mineral admixture coupled technology is promoted in this more complex situation of salt and freeze-thaw cycles. After single-side salt-frost the scaled mass of the concret is more but the dynamic modulus of elasticity loss rate is less,so the damage of concrete mainly depends on the surface scaling.
  • [2] 孙望超,颜承越. 粉煤灰形态效应及应用技术[J]. 房材与应用,1997(2) :35-36.
    prENV 12390-9: Testing Hardened ConcretePart 9: Freeze-Thaw Resistance-Scaling[S].
    [3] 牛季收,王保君. 粉煤灰在混凝土中的效应及应用[J]. 铁道建筑,2004(2) :74-77.
    [4] 刘爱新. 粉煤灰混凝土的性能及其应用[J]. 混凝土,2001(12) :6-7.
    [5] 原通鹏,邓德华,曾志,等. 矿物掺合料抗氯离子扩散性能的试验研究[J]. 混凝土,2005(11) :62-70.
    [6] Leng Faguang,Feng Naiqian,Lu Xinying. An Experimental Study on the Properties of Resistance to Diffusion of Chloride Ions of Fly Ash and Blast Furnace Slag Concrete[J]. Cement and Concrete Research,2000,30:989-992.
    [7] 钱觉时. 粉煤灰特性与粉煤灰混凝土[M]. 北京:科学出版社,2002:173-177.
    [8] 谢友均,刘宝举,刘伟. 矿物掺合料对高性能混凝土抗氯离子渗透性能的影响[J]. 铁道科学与工程学报,2004 (2) :46-51.
  • Relative Articles

    [1]WANG Yindong, LU Jianguo, WAN Xunsheng, TAN Lilin, DENG Fei, ZHOU Xiaoxun. Study on Characteristics of Hydro-Thermal Transfer and Freezing-Thawing of Soil-Rock Mixtures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 174-181. doi: 10.3724/j.gyjzG22082708
    [2]HOU Chongchi, WANG Kaixuan, ZHENG Wenzhong, LIU Yuchen, ZHANG Lijia, LI Hongbin. Seismic Performance and Cumulative Damage Analysis of Concrete Columns Confined by High-Strength Stirrups[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 133-142. doi: 10.13204/j.gyjzG22111310
    [3]XIONG Huatao. An Improved Hyperbolic Model for Silty Clay Considering Strain Softening of Soil and Freeze-Thaw Cycle Effects[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 114-121. doi: 10.13204/j.gyjzG21050610
    [4]LONG Yifei, PAN Chan, GUO Xiaoqin, LI Yangwei. Experimental Research on Dynamic Mechanical Properties of Rubber Concrete Subjected to Freeze-Thaw Cycles[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 163-170,139. doi: 10.13204/j.gyjzG21091202
    [5]WANG Yan, XU Shanhua, LI Anbang. Research on Restoring Force Model of Freeze-Thaw Damaged Reinforced Concrete Columns[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 97-102. doi: 10.13204/j.gyjzG21101322
    [6]WANG Bin, FENG Boqiang, SUN Yongfeng, YANG Qian, WANG Jiabin. A TIME-VARYING STRESS-STRAIN MODEL OF STIRRUPS CONFINED CONCRETE CONSIDERING THE EFFECT OF PITTING CORROSION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 106-112,155. doi: 10.13204/j.gyjzG20092906
    [7]HUANG Min, DUAN Jingmin, ZHANG Jiaxiang, MAO Qingchao, YUAN Jianghao, SUN Longtang. FRACTURE DAMAGE AND SOFTENING CONSTITUTIVE RALATION OF BFRC SUBJECTED TO FREEZE-THAW CYCLES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 199-205,178. doi: 10.13204/j.gyjzG21010507
    [8]CUI Honghuan, HE Jingyun, ZHANG Zhenhuan, YANG Xingran, WANG Xiaojing. A FREEZE-THAW DAMAGE MODEL OF CEMENT-SOLIDIFIED SOIL IN SEASONAL FROZEN SOIL ZONES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 158-163. doi: 10.13204/j.gyjzG20072406
    [9]XU Lina, NIU Lei, ZHANG Ying, WANG Jun. EFFECT OF FREEZE-THAW CYCLING ON THE MECHANICAL PROPERTIES OF FIBER-REINFORCED CEMENTED SOIL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 109-113. doi: 10.13204/j.gyjz202003018
    [10]LIU Yuxia, LU Jingzhou, TIAN Feixiang, LI Yunkai, LI Haibo. RESEARCH ON THE DAMAGE OF GEOPOLYMER CONCRETE UNDER THE ACTION OF SALTWATER AND FREEZE-THAW[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 76-81. doi: 10.13204/j.gyjz202004014
    [11]Li Yan, LüHenglin, Yin Huiguang, Zhang Lianying, Li Bing, Liu Ruixue. TEST RESEARCH ON THE FREEZING-THAWING RESISTANCE PERFORMANCE OF HIGH-STRENGTH CONCRETE WITH SINGLE ADMIXTURE AND DOUBLE ADMIXTURES[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 1-4. doi: 10.13204/j.gyjz201502001
    [12]Zheng Shansuo, Zhao Peng. CONSTITUTIVE RELATIONSHIP MODEL FOR MASONRY IN COMPRESSION UNDER ACTION OF FREEZE-THAW CYCLE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 15-18. doi: 10.13204/j.gyjz201502004
    [13]Qu Feng, Niu Ditao, Yang Yuxi. EXPERIMENTAL STUDY OF PERFORMANCE OF FLY ASH FIBER CONCRETE UNDER THE ACTION OF SALT FROST[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 77-80. doi: 10.13204/j.gyjz201406018
    [14]Wang Xinling, Kang Xiandong, Li Ke, Huang Weidong. FATIGUE DAMAGE MECHANISM OF HRBF500 RC BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 45-48. doi: 10.13204/j.gyjz201311011
    [15]Chen Shudong, Sun Wei, Yu Hongfa, Zhang Yunsheng. STUDY ON CARBONATION OF FLY ASH CONCRETE WITH FREEZE-THAW CYCLE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(1): 133-136. doi: 10.13204/j.gyjz201201025
    [16]Lian Yeda, Wang Xianjie, Zhang Xun'an, Limazie Toi. RESEARCH ADVANCES OF STRUCTURAL SEISMIC CUMULATIVE DAMAGE INDEX[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 118-122,142. doi: 10.13204/j.gyjz201204025
    [17]Ji Xiaodong, Zhao Ning, Song Yupu. EXPERIMENTAL STUDY ON BOND BEHAVIOR'S DETERIORATION BETWEEN DEFORMED STEEL BAR AND CONCRETE AFTER FREEZING AND THAWING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(1): 87-91. doi: 10.13204/j.gyjz201001022
    [18]Liu Ronggui, Fu Kai, Yan Tingcheng. THE FATIGUE PROPERTIES OF PRE-STRESSED CONCRETE STRUCTURE UNDER THE CONDITIONS OF FREEZE-THAW CYCLE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 75-78. doi: 10.13204/j.gyjz200811018
    [19]Jin Zuquan, Sun Wei, Zhang Yunsheng, Lai Jianzhong. STUDY ON DAMAGE OF HPC UNDER THE CORROSION OF CHLORIDE AND SULFATE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 5-7. doi: 10.13204/j.gyjz200501001
    [20]Wang Jianmin, Li Hui, Chen Longzhu. APPLICATION OF RELATIVE DISPLACEMENT CHANGE IN STOREYS OF FRAMES(RDCSF) IN STRUCTURAL DAMAGE DETECTION[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(11): 47-49,46. doi: 10.13204/j.gyjz200511014
  • Cited by

    Periodical cited type(33)

    1. 王晨霞,周阳升,王高峰,刘涛,王晓云,曹芙波. 冻融环境下钢渣细骨料混凝土微观结构及损伤演化模型. 应用力学学报. 2024(03): 585-593 .
    2. 孙传武,王学志,辛明,贺晶晶. 玄武岩-纤维素混杂纤维混凝土抗冻性能研究. 混凝土与水泥制品. 2024(07): 65-69 .
    3. 胡松,屈锋,程火焰,陈峰,石卫华,王功勋,金浩. 受冻融作用钢筋混凝土电化学除氯模型研究. 自然灾害学报. 2024(05): 218-225 .
    4. 罗映双,于峰. 纤维混凝土研究综述. 佳木斯大学学报(自然科学版). 2024(10): 122-124 .
    5. 刘骏霓,路建国,高佳佳,晏忠瑞,万旭升,张嘉成. 水工混凝土冰冻害机理及抗冻性能研究进展. 长江科学院院报. 2023(03): 158-165 .
    6. 刘春盛,吕树辰. 混杂纤维混凝土抗冻性能研究现状. 建材世界. 2023(02): 6-8 .
    7. 刘昱,周静海,吴迪,康天蓓,于杭琳. 冻融循环下废弃纤维再生混凝土与钢筋的黏结性能. 建筑材料学报. 2023(09): 1031-1038 .
    8. 谷悦,刘保华,张繁,曹琛,张施龙,廖贤陵. 油菜秸秆纤维混凝土抗冻性能的试验研究. 湖南农业大学学报(自然科学版). 2023(05): 603-608 .
    9. 周大卫,刘娟红,段品佳,程立年,娄百川. 混凝土超低温冻融循环损伤演化规律和机理. 建筑材料学报. 2022(05): 490-497 .
    10. 牛建刚,王梦雨,李京军,郝吉. 冻融后塑钢纤维轻骨料混凝土与钢筋黏结性能试验研究. 应用基础与工程科学学报. 2021(02): 459-470 .
    11. 周涛,熊小斌,李岩. 冻融循环对钢纤维混凝土动力性能的影响研究. 水资源与水工程学报. 2021(03): 167-172+178 .
    12. 王威,罗桂军,唐寄强,罗曜波,何威特,李满意,颜斌. 氯盐-冻融循环下PPFC耐久性能研究. 建筑结构. 2021(S2): 1012-1016 .
    13. 辛明,王学志,佟欢. 纤维混凝土耐久性能研究综述. 辽宁工业大学学报(自然科学版). 2020(01): 35-39 .
    14. 聂红宾,谷拴成,高攀科,张建鹏. 寒区碳纤维增强混凝土抗冻性能试验研究. 混凝土与水泥制品. 2020(05): 46-50 .
    15. 朱红兵,吕洪林,李秀,向杰. 氯盐环境下聚丙烯纤维陶粒混凝土冻融损伤模型试验研究. 新型建筑材料. 2020(07): 46-50 .
    16. 赵瑞刚,傅思静,徐海燕,陶静,张黎. 体积掺量与混杂比对钢-聚丙烯纤维水泥基体性能的影响. 内江师范学院学报. 2020(10): 76-81 .
    17. 程猛,张经双,段雪雷,朱建华. 冻融循环作用下混杂纤维粉煤灰混凝土力学性能试验. 科学技术与工程. 2020(27): 11288-11294 .
    18. 赵小明,李奥阳,乔宏霞,李江川,王新科. 纤维混凝土抗冻性能及损伤劣化模型研究. 硅酸盐通报. 2020(10): 3196-3202 .
    19. 吕圆芳,杨永东. 混杂纤维自密实混凝土冻融性能试验研究. 混凝土与水泥制品. 2020(11): 52-56 .
    20. 宁喜亮,王万平,郝帅,赵子舜,张发山. 不同纤维对混凝土在多重因素作用下抗冻耐久性的影响. 工业建筑. 2020(10): 122-128 . 本站查看
    21. 王志旺,杨鼎宜,王金辉,刘淼,杨俊. 聚丙烯腈纤维混凝土耐久性能试验研究. 混凝土与水泥制品. 2019(11): 49-52 .
    22. 王腾蛟,许金余,彭光,孟博旭. 纳米碳纤维增强混凝土耐久性试验. 功能材料. 2019(11): 11114-11121 .
    23. 李春蕊,王学志,刘华新,胡柯心,李根. 混杂纤维混凝土的研究进展. 材料科学与工程学报. 2018(03): 504-510 .
    24. 牛建刚,谢承斌,郝吉. 冻融下预湿方式对塑钢纤维轻骨料混凝土与钢筋粘结性能的影响. 土木建筑与环境工程. 2018(03): 66-72 .
    25. 牛建刚,左付亮,王佳雷,谢承斌. 塑钢纤维轻骨料混凝土的冻融损伤模型. 建筑材料学报. 2018(02): 235-240 .
    26. 王学志,赵兵兵,朱安标,刘华新. 钢-聚丙烯混杂纤维高强混凝土抗渗性试验研究. 科技通报. 2018(03): 79-83 .
    27. 朱建华. 纤维混凝土的发展. 山西建筑. 2018(32): 120-122 .
    28. 陈升平,王佳雯. 冻融环境下纤维混凝土损伤模型研究. 混凝土. 2017(10): 58-61+67 .
    29. 朱冬梅,霍轶珍,李生勇. 橡胶纤维混凝土抗冻性和孔结构试验分析. 河套学院论坛. 2017(04): 84-88 .
    30. 曹雅娴,贾尚华. 碳-聚丙烯混杂纤维混凝土力学性能试验研究. 公路. 2016(10): 220-224 .
    31. 杨晨晨,白英,田晓宇,张金龙. 掺纤维橡胶混凝土抗冻性能研究. 硅酸盐通报. 2016(10): 3456-3460 .
    32. 任莉莉,朱安标,王学志,刘华新. 纤维掺量及混杂比对钢-聚丙烯混杂纤维高强混凝土力学性能影响研究. 混凝土. 2016(08): 63-66+70 .
    33. 姚文杰,庞建勇,刘洋,王青成. 聚丙烯纤维混凝土耐久性与冻融损伤模型研究. 科学技术与工程. 2016(21): 313-316 .

    Other cited types(30)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.2 %FULLTEXT: 22.2 %META: 77.8 %META: 77.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.1 %其他: 11.1 %东莞: 1.1 %东莞: 1.1 %中山: 1.1 %中山: 1.1 %乌鲁木齐: 13.3 %乌鲁木齐: 13.3 %九江: 2.2 %九江: 2.2 %六安: 1.1 %六安: 1.1 %北京: 17.8 %北京: 17.8 %台州: 5.6 %台州: 5.6 %呼和浩特: 2.2 %呼和浩特: 2.2 %张家口: 1.1 %张家口: 1.1 %杭州: 1.1 %杭州: 1.1 %漯河: 1.1 %漯河: 1.1 %漳州: 1.1 %漳州: 1.1 %芒廷维尤: 20.0 %芒廷维尤: 20.0 %芝加哥: 6.7 %芝加哥: 6.7 %衡水: 2.2 %衡水: 2.2 %衢州: 1.1 %衢州: 1.1 %西宁: 6.7 %西宁: 6.7 %郑州: 1.1 %郑州: 1.1 %重庆: 1.1 %重庆: 1.1 %金华: 1.1 %金华: 1.1 %其他东莞中山乌鲁木齐九江六安北京台州呼和浩特张家口杭州漯河漳州芒廷维尤芝加哥衡水衢州西宁郑州重庆金华

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads(117) Cited by(63)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return