Vibration Comfort Assessment and Control of Pedestrian-Induced Vibrations in Curved Pedestrian Bridges
-
摘要: 为了有效抑制人行桥在竖向周期性荷载下的动力响应,对比了设置质量调谐阻尼器(TMD)和旋转惯性双调谐质量阻尼器(RIDTMD)来减小竖向加速度的效果。以山地步道项目的架空人行桥典型段为研究背景,在考虑支座实际刚度下,对曲线人行桥进行静力作用下的受力性能分析,通过有限元软件MIDAS/Civil和ANSYS建立该段桥梁的精细化有限元模型,按照实际荷载情况施加荷载,进行强度与刚度分析,两者计算得到的梁上最大应力的相对误差仅为0.59%;从避开敏感频率和限制结构动力响应方面对人行桥进行舒适度分析,并按照国内外规范对人行桥进行舒适度评级,提出了设置调谐质量阻尼器对人致振动的控制方案;在人行桥第四跨跨中设置RIDTMD的方法,基于改进定点理论将RIDTMD多参数优化简化为质量和阻尼的二维优化,结合MATLAB Simscape迭代计算确定RIDTMD最优参数。结果表明:在人行桥第四跨跨中设置质量比为3%的TMD,可以有效抑制人群步伐不一致的竖向周期性荷载下的动力响应,竖向加速度减振效果可达到61.8%,舒适度等级按照德国规范从CL3提高至CL1, 按照中国规范从等级4提高至等级2;在等效的加速度控制效果下,调谐质量比从3%降低至1.95%,质量优化率达到35%。Abstract: In order to effectively suppress the dynamic response of pedestrian bridges under vertical periodic loads, this paper compares the effectiveness of installing a tuned mass damper (TMD) and a rotary inertial double-tuned mass damper (RIDTMD) in reducing vertical acceleration. Taking a typical section of an elevated pedestrian bridge in a mountain trail project as the research background and considering the actual stiffness of the supports, this paper analyzes the mechanical properties of a curved pedestrian bridge under static loading. Using the finite element software MIDAS/Civil and ANSYS, a refined finite element model of the bridge section was established. Loads were applied according to the actual loading conditions, and strength and stiffness analyses were carried out. The relative error between the maximum stresses calculated by the two methods was only 0.59%. Comfort analysis of the pedestrian bridge was conducted by avoiding sensitive frequencies and limiting the dynamic response of the structure. Furthermore, the comfort rating of the pedestrian bridge was evaluated in accordance with Chinese and international standards. A control scheme for pedestrian-induced vibrations using a TMD was proposed. At the same time, the method of installing a rotary inertial double-tuned mass damper (RIDTMD) at the midspan of the fourth span of the pedestrian bridge was also adopted. Based on the improved fixed-point theory, the multi-parameter optimization of the RIDTMD was simplified to a two-dimensional optimization of mass and damping. The optimal parameters were determined through iterative calculations using MATLAB Simscape. By installing a TMD with a mass ratio of 3% at the midspan of the fourth span of the pedestrian bridge, the dynamic response under vertical periodic loads caused by inconsistent pedestrian paces could be effectively suppressed. The vibration reduction effect on vertical acceleration reached 61.8%. The comfort level of the pedestrian bridge was improved from CL3 to CL1 under German standards and from Grade 4 to Grade 2 according to Chinese standards. Under equivalent acceleration control effect, the tuned mass ratio was reduced from 3% to 1.95%, achieving a mass optimization rate of 35%.
-
Key words:
- pedestrian bridge /
- comfort level /
- vibration control /
- tuned mass damper
-
[1] GRIFFIN M J. Handbook of human vibration[M]. London; Academic Press,1990. [2] 甘培峰,何志力,肖泰. 滨海廊桥A段人行天桥结构设计与研究[J]. 建筑结构,2022,52(增刊2):593-598. [3] 刘建涛,王春光,王力,等. 大跨连桥结构设计研究[J]. 建筑结构,2018,48(增刊1):162-167. [4] 周健华,黄友钦,刘爱荣. 斜拱曲梁桥人致振动舒适度与减振研究[J]. 工程力学,2022,39(增刊1):214-220. [5] 刘浩,赵建国,李鼎,等. 国家会展中心(天津)工程大跨度人行天桥设计[J]. 建筑结构,2022,52(16):50-54. [6] Deutsche Ausschuss für Stahlbau(DASt). Design of footbridges-guideline for the design of footbridges with regard to vibrations and dynamic actions:richtlinie EN 03-2007[S]. Berlin:DASt,2007. [7] 方建华,武芳文,谢亮,等. 人行悬索桥人致振动舒适度分析与试验研究[J]. 公路工程,2022,47(6):74-84. [8] 王晋平,陈隽. 人群步行荷载等效动载因子及应用[J]. 振动与冲击,2024,43(16):269-277. [9] 王梁坤,周颖,施卫星. 半主动调谐质量阻尼器对随机人群荷载振动控制[J]. 同济大学学报(自然科学版),2024,52(10):1483-1491. [10] 温金龙,汪志昊,寇琛,等. 人-桥竖向耦合振动效应试验研究[J]. 振动与冲击,2022,41(9):26-31. [11] 温青,何泳霖,周越,等. 曲线钢桁桥人致振动舒适性评价现场试验研究[J]. 噪声与振动控制,2024,44(6):236-241. [12] 骆仁杰. 曲线连续刚构桥受力变形分析与合龙顶推研究[D]. 武汉:武汉理工大学,2023. [13] SMITH M C. Synthesis of mechanical networks:the inerter[J]. IEEE Transactions on Automatic Control,2002,47(10):1648-1662. [14] GARRIDO H,CURADELLI O,AMBROSINI D. Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper[J]. Engineering Structures,2013,56:2149-2153. [15] 贺智铭 唐贞云,董晓辉,等. 调谐质量惯容阻尼器对核安全壳的减震性能研究[J]. 地震工程与工程振动,2025,45(1):51-60. [16] 罗一帆,郜健博,赵文韬,等. 旋转惯性双调谐质量阻尼器对结构减震的参数解析优化及分析[J]. 振动与冲击,2025,44(11):215-224. [17] 马宏伟,曾昱棠,刘鹏,等. 高层结构附加调谐质量惯容装置的轻量化结构控制研究[J]. 振动与冲击,2025,44(7):163-171. [18] 中华人民共和国建设部. 城市人行天桥与人行地道技术规范:CJJ 69—95[S]. 北京:中国建筑工业出版社,1996. [19] 中华人民共和国交通运输部. 公路钢结构桥梁设计规范:JTG D64—2015[S]. 北京:人民交通出版社,2015. [20] 中华人民共和国住房和城乡建设部. 城市桥梁设计规范:CJJ 11—2011[S]. 北京:中国建筑工业出版社,2012. [21] 交通运输部公路科学研究院. 公路桥梁技术状况评定标准:JTG/T H21—2011[S]. 北京:人民交通出版社,2011. [22] European Committee for Standardization. Eurocode 1:actions on structures—part 2:traffic loads on bridges:EN 1991-2[S]. Brussels:European Committee for Standardization,2003. [23] International Organization for Standardization. Mechanical vibration and shock-evaluation of human exposure to whole-body vibration-part 1:general requirements:ISO 2631[S]. Switzerland:International Organization for Standardization,1997. [24] International Organization for Standardization. Bases for design of structures-serviceability of buildings and walkways against vibrations:ISO 10137[S]. Geneva:International Organization for Standardization,2007. [25] HARTOG J P. Mechanical vibrations[M]. New York:Dover Publications,1947:126-131. [26] BARREDO E,BLANCO A,COLÍN J,et al. Closed-form solutions for the optimal design of inerter-based dynamic vibration absorbers[J]. International Journal of Mechanical Sciences,2018,144:41-53. -
点击查看大图
计量
- 文章访问数: 7
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: