| [1] |
于永清,李光范,李鹏 等. 四川电网汶川地震电力设施受灾调研分析[J]. 电网技术,2008,32(11):5-10.
|
| [2] |
于文,葛学礼,朱立新. 电力系统震害分析和抗震防灾对策[J]. 工业建筑,2016,46(6):12-15.
|
| [3] |
张中近,刘如山,姜立新. 基于损失统计的变电站地震经济损失评估方法[J]. 自然灾害学报,2016,25(4):93-100.
|
| [4] |
侯忠良,耿树江. 生命线工程的抗震减灾措施[J]. 工业建筑,1991,21(1):8-11.
|
| [5] |
陆益挺,蒋建群,胡云进,等. 城市供水管道抗震可靠度评估方法与应用[J]. 城市道桥与防洪,2012(6):150-154.
|
| [6] |
张明媛,双晴,袁永博. 基于DEA分析的生命线网络节点抗灾相对可靠度评估[J]. 防灾减灾工程学报,2011,31(4):403-407.
|
| [7] |
何军,李杰. 大型生命线工程抗震可靠度分析的递推分解算法[J]. 同济大学学报(自然科学版),2001(7):757-762.
|
| [8] |
顾倩,夏恒,何军. 相依失效生命线工程系统抗震可靠度估计的统一RDA算法[J]. 工程力学,2020,37(10):155-167.
|
| [9] |
JOHNSON B,CHALISHAZAR V,COTILLA-SANCHEZ E,et al. A Monte Carlo methodology for earthquake impact analysis on the electrical grid[J]. Electric Power Systems Research,2020,184,106332.
|
| [10] |
史运涛,刘召,刘伟川,等. 基于贝叶斯网络的社区配电网系统动态风险评估[J]. 安全与环境工程,2021,28(2):121-132.
|
| [11] |
孟祥成,何军. 基于高维Gumbel Copula参数拟合估计的大型相依失效生命线网络地震动力可靠度计算[J]. 防灾减灾工程学报,2023,43(2):210-221.
|
| [12] |
何志超,王艳辉,安超,等. 基于拓扑网络模型的高速列车转向架系统中薄弱部件辨识方法[J]. 安全与环境工程,2021,28(2):72-79.
|
| [13] |
LIU X,ZHENG S,WU X,et al. Research on a seismic connectivity reliability model of power systems based on the quasi-Monte Carlo method[J]. Reliability Engineering& System Safety,2021,215,107888.
|
| [14] |
郑山锁,汪靖,贺金川,等. 变电站主接线系统地震易损性分析[J]. 华中科技大学学报(自然科学版),2020,48(3):98-103.
|
| [15] |
李吉超. 基于概率的变电站系统抗震性能评估方法研究[D]. 哈尔滨:中国地震局工程力学研究所,2018.
|
| [16] |
刘祎. 大电网可靠性蒙特卡罗模拟的最优f散度重要抽样方法研究[D]. 重庆:重庆大学,2021.
|
| [17] |
李杰. 生命线工程的研究进展与发展趋势[J]. 土木工程学报,2006,39(1):1-6.
|
| [18] |
高军利,和兴锁,陶文祥. 结构系统可靠度分析方法及其实现[J]. 工业建筑,2008,38(增刊1):316-319.
|
| [19] |
JIRUTITIJAROEN P,SINGH C. Comparison of simulation methods for power system reliability indexes and their distributions[J]. IEEE Transactions on Power Systems,2008,23(2):486-493.
|
| [20] |
MELO A C G,OLIVEIRA G C,FO M M,et al. A hybrid algorithm for Monte Carlo/enumeration based composite reliability evaluation(power systems)[C]// 1991 Third International Conference on Probabilistic Methods Applied to Electric Power Systems. London:1991:70-74.
|
| [21] |
OLIVEIRA G C,PEREIRA M V F,CUNHA S H F. A technique for reducing computational effort in Monte-Carlo based composite reliability evaluation[J]. IEEE Transactions on Power Systems,1989,4(4):1309-1315.
|
| [22] |
SANKARAKRISHNAN A,BILLINTON R. Sequential Monte Carlo simulation for composite power system reliability analysis with time varying loads[J]. IEEE Transactions on Power Systems,1995,10(3):1540-1545.
|
| [23] |
CAI J,HAO L,XU Q,et al. Reliability assessment of renewable energy integrated power systems with an extendable Latin hypercube importance sampling method[J]. Sustainable Energy Technologies and Assessments,2022,50,101792.
|
| [24] |
MOHAMMED N A. Comparing halton and sobol sequences in integral evaluation[J]. Zanco Journal of Pure and Applied Sciences,2019,31(1):32-39.
|
| [25] |
CERVAN D,CORONADO A M,LUYO J E. Cluster-based stratified sampling for fast reliability evaluation of composite power systems based on sequential Monte Carlo simulation[J]. International Journal of Electrical Power& Energy Systems,2023,147,108813.
|
| [26] |
ALMEIDA D B,BORGES C L T,OLIVEIRA G C,et al. Multi-area reliability assessment based on importance sampling,MCMC and stratification to incorporate variable renewable sources[J]. Electric Power Systems Research,2021,193,107001.
|
| [27] |
WARSHALL S. A theorem on boolean matrices[J]. Journal of the ACM(JACM),1962,9(1):11-12.
|
| [28] |
BIELECKI W,KRASKA K,KLIMEK T. Using basis dependence distance vectors in the modified floyd-warshall algorithm[J]. Journal of Combinatorial Optimization,2015,30:253-275.
|
| [29] |
张世龙,沈玉利. 稀疏矩阵情况下 Warshall 算法的改进[J]. 计算机工程与应用,2008,44(28):60-61.
|
| [30] |
WANG Z,WU Y,XU Y,et al. An efficient algorithm to determine the connectivity of complex directed networks[J]. IEEE Transactions on Cybernetics,2020,52(7):7164-7171.
|
| [31] |
贺金川,刘晓航,郑山锁,等. 基于三角形算法的电力系统连通可靠性分析[J]. 防灾减灾工程学报,2020,40(5):764-770.
|
| [32] |
AINI A,SALEHIPOUR A. Speeding up the Floyd-Warshall algorithm for the cycled shortest path problem[J]. Applied Mathematics Letters,2012,25(1):1-5.
|
| [33] |
Federal Emergency Management Agency. Hazus earthquake model technical manual,hazus 5.1[R]. Washington D C:Federal Emergency Management Agency,2022.
|