Research on the Intelligent Management System for Existing Building Safety Based on Large-Scale Screening and Targeted Monitoring
-
摘要: 针对我国既有房屋量大面广、安全隐患逐渐增多、传统房屋安全检测监测成本高、效率低的问题,提出了依托卫星遥感、北斗系统、智能机器人、无人机、人工智能(AI)等技术构建的从广域筛查到重点监测的房屋安全管理模式。重点通过高分光学卫星遥感开展房屋改扩建识别,利用合成孔径雷达干涉测量(InSAR)技术发现房屋形变安全隐患,部署北斗高精度定位系统对筛查出的隐患建筑进行动态监测,借助机器人与无人机搭载不同载荷对高层、超高层、大型公共建筑等重点建筑进行自动化巡检,同时以AI赋能增强对监测数据的异常特征识别能力。最终通过建设全国房屋安全综合管理平台,开展房屋安全的广域筛查、重点监测和数字化管理,建立多层次协同的房屋安全风险管控机制,推动风险管理由“事后应急”向“事前预防”的转变,提升房屋安全管理智慧化水平。Abstract: In response to the extensive scale of existing buildings in China, increasing safety hazards, and the high costs and inefficiencies of traditional building inspection and monitoring methods, this study proposes a comprehensive building safety management model. This model leverages satellite remote sensing, the BeiDou Navigation Satellite System (BDS), intelligent robots, unmanned aerial vehicles (UAVs), and artificial intelligence (AI) to enable large-scale screening and targeted monitoring of building safety. Key components include: high-resolution optical satellite remote sensing for identifying building modifications and extensions; radar satellite InSAR technology for detecting structural deformation and potential safety risks; high-precision BDS for dynamic monitoring of high-risk buildings; robots and UAVs equipped with multi-functional sensors for automated inspection of high-rise, super-tall, and large-scale public buildings; and AI-enhanced analytics to improve anomaly detection in monitoring data. By establishing a national building safety management platform, this approach enables large-scale screening, targeted monitoring, and digital management of building safety. It supports a multi-tiered risk control mechanism, shifting risk management from post-incident response to preventive measures, thereby advancing the intelligence and efficiency of building safety management.
-
[1] 中共中央办公厅 国务院办公厅. 关于推进新型城市基础设施建设打造韧性城市的意见[EB/OL]. 北京:新华社,2024-12-05. https://www.gov.cn/zhengce/202412/content_6991171.htm. [2] 龚仕伟. 房屋结构安全监测研究[J]. 建筑电气,2020,39(12):37-41. [3] 龙武剑,舒雨清,梅柳,等. 土木工程智能结构健康监测应用综述[J]. 结构工程师,2024,40(3):203-216. [4] 中华人民共和国中央人民政府. 加快推进城镇房屋安全管理三项制度试点[EB/OL].[2024-02-14]. https://www.gov.cn/lianbo/bumen/202402/content_6931473.htm. [5] 中国建设报. 关于首次全国自然灾害综合风险普查,住建部做了这些工作[EB/OL].[2024-05-08]. https://mp.weixin.qq.com/s/9F_nc4WoXir0fHKgMwdSNg. [6] 国家统计局. 2020中国人口普查年鉴[EB/OL].[2020-11-01]. https://www.stats.gov.cn/sj/pcsj/rkpc/7rp/zk/indexce.htm. [7] 温敏. 建立既有房屋安全管理体系的思考[J]. 建筑经济,2022,43(增刊1):126-130. [8] CUI Y F,ZHAO S M,JIANG W S,et al. Urban building height extraction from gaofen-7 stereo satellite images enhanced by contour matching[J]. Remote Sensing,2024,14(7),1566. [9] 杨梦诗,廖明生,常玲,等. 城市场景时序InSAR形变解译:问题分析与研究进展[J]. 武汉大学学报(信息科学版),2023,48(10):1643-1660. [10] 于静,郭鹏,张华,等. 城乡建设领域北斗系统应用现状与趋势[J]. 城市发展研究,2024,31(5):26-29. [11] 史俊波,欧阳晨皓,岳金广,等. 三家北斗地基增强系统的高精度定位服务性能对比分析[J]. 大地测量与地球动力学,2022,42(7):712-715. [12] 王开强,孙庆,张勇,等. 建筑业巡检机器人研究现状与关键技术[J]. 建筑机械,2024(8):28-38. [13] 李波,李晗,胡正伟. 无人机贴近摄影测量技术在建筑立面测量中的应用[J]. 测绘通报,2024(增刊2):32-36. [14] 李智,高连如,郑珂,等. 高分辨率遥感图像场景分类研究进展[J]. 遥感学报,2024,28(11):2739-2760. [15] MA P F,ZHENG Y,ZHANG Z J,et al. Building risk monitoring and prediction using integrated multi-temporal InSAR and numerical modeling techniques[J]. International Journal of Applied Earth Observation and Geoinformation,2022,114,103076. [16] 周云,陈建炜,邹少豪,等. 基于星载InSAR技术的城市建筑群变形监测与安全风险评估研究综述[J/OL]. 土木工程学报,2025[2025-04-08]. https://doi.org/10.15951/j.tmgcxb.24080654. -
点击查看大图
计量
- 文章访问数: 11
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: