中国科技核心期刊
中国建筑科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预应力纤维增强复合材料筋/索的短长期力学性能研究进展

王研妍 徐曼 许庆 田会文 曾滨 许镇

王研妍, 徐曼, 许庆, 田会文, 曾滨, 许镇. 预应力纤维增强复合材料筋/索的短长期力学性能研究进展[J]. 工业建筑, 2025, 55(10): 1-14. doi: 10.3724/j.gyjzG25042503
引用本文: 王研妍, 徐曼, 许庆, 田会文, 曾滨, 许镇. 预应力纤维增强复合材料筋/索的短长期力学性能研究进展[J]. 工业建筑, 2025, 55(10): 1-14. doi: 10.3724/j.gyjzG25042503
WANG Yanyan, XU Man, XU Qing, TIAN Huiwen, ZENG Bin, XU Zhen. Experimental Research on Short-Term and Long-Term Mechanical Properties of Prestressed FRP Tendons/Cables[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(10): 1-14. doi: 10.3724/j.gyjzG25042503
Citation: WANG Yanyan, XU Man, XU Qing, TIAN Huiwen, ZENG Bin, XU Zhen. Experimental Research on Short-Term and Long-Term Mechanical Properties of Prestressed FRP Tendons/Cables[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(10): 1-14. doi: 10.3724/j.gyjzG25042503

预应力纤维增强复合材料筋/索的短长期力学性能研究进展

doi: 10.3724/j.gyjzG25042503
基金项目: 

国家重点研发计划(2022YFC3801800);国家自然科学基金项目(52478322)。

详细信息
    作者简介:

    王研妍,硕士研究生,主要从事预应力FRP筋/索性能研究。

    通讯作者:

    徐曼,manman3112899@126.com。

Experimental Research on Short-Term and Long-Term Mechanical Properties of Prestressed FRP Tendons/Cables

  • 摘要: 纤维增强复合材料(FRP)是一种高性能复合材料,具有强度高、质量轻、耐腐蚀和抗疲劳性能优异等优点,在预应力结构中具有巨大的应用潜力。然而,FRP是典型的正交各向异性材料,其垂直纤维方向的强度和模量远低于纤维方向,这给FRP筋/索的应用带来了挑战,现有的研究成果尚无法支撑FRP筋/索在预应力结构中的标准化应用。基于近年对于FRP筋/索的试验研究成果和理论分析,主要涵盖FRP筋/索在拉伸、剪切及受压工况下的短期力学性能,以及长期的松弛、蠕变和疲劳性能,总结了FRP筋/索在不同荷载工况下力学性能测试方法、破坏模式、性能特点和其他相关结论,系统分析了纤维类型与含量、筋/索直径与成型工艺、测试方法等不同因素对FRP筋/索短长期力学性能的影响规律,并指明了FRP筋/索未来研究与发展方向,为FRP筋/索研究和应用提供参考。
  • [1] 梁书亭,王文康,朱筱俊,等. 预应力在我国大跨度结构中的应用研究综述[J]. 东南大学学报(自然科学版),2024,54(3):559-566.
    [2] 李富民,邓天慈,王江浩,等. 预应力混凝土结构耐久性研究综述[J]. 建筑科学与工程学报,2015,32(2):1-20.
    [3] 叶列平,冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报,2006,39(3):24-36.
    [4] 冯鹏,叶列平,金飞飞,等. FRP桥梁结构的受力性能与设计方法[J]. 玻璃钢/复合材料,2011(5):12-19.
    [5] 朱虹,钱洋. 工程结构用FRP筋的力学性能[J]. 建筑科学与工程学报,2006(3):26-31.
    [6] XIE G H,YIN J,LIU R G,et al. Experimental and numerical investigation on the static and dynamic behaviors of cable‐stayed bridges with CFRP cables[J]. Composites Part B:Engineering,2016,111:235-242.
    [7] SCHMIDT J W,BENNITZ A,TALJSTEN B,et al. Mechanical anchorage of FRP tendons:a literature review[J]. Construction and Building Materials,2012,32:110-121.
    [8] D'ANTINO T,PISANI M A. Long‐term behavior of GFRP reinforcing bars[J]. Composite Structures,2019,227,111283.
    [9] LI G W,WU J T,GE W M. Effect of loading rate and chemical corrosion on the mechanical properties of large diameter glass/basalt‐glass FRP bars[J]. Construction and Building Materials,2015,93:1059-1066.
    [10] 顾兴宇,沈新,陆家颖. 玄武岩纤维筋拉伸力学性能试验研究[J]. 西南交通大学学报,2010,45(6):914-919.
    [11] 夏鹏飞. 常泰长江大桥主航道桥纵向约束索CFRP筋材及成品索试制试验研究[J]. 桥梁建设,2024,54(5):1-6.
    [12] 罗金标,彭哲琦,汪昕,等. 新型玄武岩纤维复合材料(BFRP)锚杆力学性能研究[J]. 复合材料科学与工程,2022(12):79-86.
    [13] 陆春华,平安,延永东,等. 高温作用后GFRP/BFRP筋拉伸性能试验研究及强度折减计算[J]. 哈尔滨工程大学学报,2023,44(3):443-449.
    [14] BENMOKRANE B,ZHANG B,CHENNOUF A. Tensile properties and pullout behaviour of AFRP and CFRP rods for grouted anchor applications[J]. Construction and Building Materials,2000,14(3):157-170.
    [15] PROTCHENKO K,ZAYOUD F,URBANSKI M,et al. Tensile and shear testing of basalt fiber reinforced polymer(BFRP)and hybrid basalt/carbon fiber reinforced polymer(HFRP)bars[J]. Materials,2020,13(24),5839.
    [16] URBANSKI M,LAPKO A,GARBACZ A. Investigation on concrete beams reinforced with basalt rebars as an effective alternative of conventional R/C structures[J]. Procedia Engineering,2013,57:1183-1191.
    [17] KIM Y J. Flexural response of concrete beams prestressed with AFRP tendons:numerical investigation[J]. Journal of Composites for Construction,2010,14(6):647-658.
    [18] WANG X,SHI J Z,WU Z S,et al. Creep strain control by pretension for basalt fiber‐reinforced polymer tendon in civil applications[J]. Materials & Design,2016,89:1270-1277.
    [19] MEI K H,SERACINO R,LYU Z T. An experimental study on bond‐type anchorages for carbon fiber‐reinforced polymer cables[J]. Construction and Building Materials,2016,106:584-591.
    [20] LU C H,QI Z H,ZHENG Y L,et al. Long‐term tensile performance of GFRP bars in loaded concrete and aggressive solutions[J]. Journal of Building Engineering,2023,64,105587.
    [21] 高永红,田云,金清平,等. 温度对GFRP筋拉伸力学性能的影响研究[J]. 塑胶工业,2016,44(9):95-99.
    [22] SZMIGIERA E D,PROTCHENKO K,URBANSKI M,et al. Mechanical properties of hybrid FRP bars and nano‐hybrid FRP bars[J]. Archives of Civil Engineering,2019,65(1):97-110.
    [23] LI J Y,FANG Z,FANG Y W,et al. A practical model for predicting the tensile capacity of CFRP strand cables[J]. Construction and Building Materials,2025,463,140084.
    [24] WANG X,WU Z S,WU G,et al. Enhancement of basalt FRP by hybridization for long‐span cable‐stayed bridge[J]. Composites Part B:Engineering,2013,44:184-192.
    [25] GENIKOMSOU A S,BALOMENOS G P,ARCZEWSKA P,et al. Transverse shear testing of GFRP bars with reduced cross sections[J]. Journal of Composites for Construction,2018,22(5),04018032.
    [26] WANG X,WANG Z H,WU Z S,et al. Shear behavior of basalt fiber reinforced polymer(FRP)and hybrid FRP rods as shear resistance members[J]. Construction and Building Materials,2014,73:781-789.
    [27] HAN Q H,WANG L C,XU J. Experimental research on mechanical properties of transverse enhanced and high‐temperature‐resistant CFRP tendons for prestressed structure[J]. Construction and Building Materials,2015,98:864-874.
    [28] YUN H D,KIM S H,CHOI W. Determination of mechanical properties of sand‐coated carbon fiber reinforced polymer(CFRP)rebar[J]. Polymers,2023,15(9),2186.
    [29] Canadian Standards Association. Design and construction of building structures with fibre‐reinforced polymers:CSA S806-12(R2017)[S]. Toronto:CSA Group,2017.
    [30] 付成龙,陈利,张雅璐. 几何尺寸与温度对CFRP筋材力学性能的影响[J]. 玻璃钢/复合材料,2016(5):74-79.
    [31] 黄亚新,苗大胜,程曦,等. 不同种类拉挤FRP筋材压缩强度研究[J]. 工程塑胶应用,2012,40(8):81-85.
    [32] URBAŃSKI M. Compressive strength of modified FRP hybrid bars[J]. Materials,2020,13(8),1898.
    [33] ZHENG Y,SUN Z Y,TANG Y,et al. Experimental study on the compressive performance and enhancement of buckling resistance for composite bars[J]. Journal of Materials in Civil Engineering,2025,37(1),04024445.
    [34] 关纪文,陈红梅,韦丽兰,等. 结构用GFRP筋受压力学性能试验[J]. 湖南科技大学学报(自然科学版),2023,38(4):37-43.
    [35] ZHOU Z L,MENG L,ZENG F,et al. Experimental study and discrete analysis of compressive properties of glass fiber‐reinforced polymer(GFRP)bars[J]. Polymers,2023,15(12),2651.
    [36] 孙丽,王汉珽. GFRP筋受压力学性能试验[J]. 沈阳建筑大学学报(自然科学版),2011,27(6):1037-1042.
    [37] ALNAJMI L,ABED F. Evaluation of FRP bars under compression and their performance in RC columns[J]. Materials,2020,13(19),4541.
    [38] HIESCH D,PROSKE T,GRAUBNER C A,et al. Theoretical and experimental investigation of the time‐dependent relaxation rates of GFRP and BFRP reinforcement bars[J]. Structural Concrete,2023,24:2800-2816.
    [39] YANG D,ZHANG J W,SONG S T,et al. Experimental investigation on the creep property of carbon fiber reinforced polymer tendons under high stress levels[J]. Materials,2018,11(11),2273.
    [40] ATUTIS M,VALIVONIS J,ATUTIS E. Experimental study of concrete beams prestressed with basalt fiber reinforced polymers. Part Ⅱ:stress relaxation phenomenon[J]. Composite Structures,2018,202:344-354.
    [41] ZHOU J Y,WANG X,LIU X,et al. Numerical and experimental evaluation of a variable‐stiffness wedge anchorage for basalt‐fiber‐reinforced polymer tendons[J]. Engineering Structures,2024,304,117684.
    [42] GRACE N F,MOHAMED M E,BEBAWY M R. Evaluating fatigue,relaxation,and creep rupture of carbon‐fiber‐reinforced polymer strands for highway bridge construction[J]. PCI Journal,2023,68(3):36-61.
    [43] WANG X,SHI J Z,LIU J,et al. Creep behavior of basalt fiber reinforced polymer tendons for prestressing application[J]. Materials and Design,2014,59:558-564.
    [44] AI P C,DING G Z,LI Z Y,et al. Long‐term creep behavior of novel self‐anchored CFRP cable system[J]. Composite Structures,2024,334,117965.
    [45] ZHU G H,CHENG H,DENG Z P,et al. Creep behavior analysis and creep rupture prediction of carbon‐glass fiber reinforced polymer tendon[J]. Chemical Engineering Transactions,2015,46:463-468.
    [46] SOKAIRGE H,ELGABBAS F,RASHAD A,et al. Long‐term creep behavior of basalt fiber reinforced polymer bars[J]. Construction and Building Materials,2020,260,120437.
    [47] YOUSSEF T,BENMOKRANE B. Creep behavior and tensile properties of GFRP bars under sustained service loads[J]. ACI Special Publication,2011,275:1-20.
    [48] SHI J Z,WANG X,WU Z S,et al. Creep behavior enhancement of a basalt fiber‐reinforced polymer tendon[J]. Construction and Building Materials,2015,94:750-757.
    [49] ROSSINI M,SAQAN E,NANNI A. Prediction of the creep rupture strength of GFRP bars[J]. Construction and Building Materials,2019,227,116620.
    [50] SAADATMANESH H,TANNOUS F E. Long‐term behavior of aramid fiber‐reinforced plastic(AFRP)tendons[J]. ACI Materials Journal,1999,96(3):291-299.
    [51] SAADATMANESH H,TANNOUS F E. Relaxation,creep,and fatigue behavior of carbon fiber reinforced plastic tendons[J]. ACI Materials Journal,1999,96(2):143-153.
    [52] WANG X,SHI J Z,WU Z S,et al. Fatigue behavior of basalt fiber‐reinforced polymer tendons for prestressing applications[J]. Journal of Composites for Construction,2016,20(3),04015079.
    [53] FENG B,WANG X,WU Z S,et al. Performance of anchorage assemblies for CFRP cables under fatigue loads[J]. Structures,2021,29:947-953.
    [54] REFAIAI A EL. Durability and fatigue of basalt fiber‐reinforced polymer bars gripped with steel wedge anchors[J]. Journal of Composites for Construction,2013,17(6),04013006.
    [55] ZHAO X,WANG X,WU Z S,et al. Fatigue behavior and failure mechanism of basalt FRP composites under long‐term cyclic loads[J]. International Journal of Fatigue,2016,88:58-67.
    [56] 赵杏. FRP拉索疲劳损伤演化规律和寿命可控设计方法研究[D]. 南京:东南大学,2018.
    [57] ADIMI M R,RAHMAN A H,BENMOKRANE B. New method for testing fiber reinforced polymer rods under fatigue[J]. Journal of Composites for Construction,2000,4(4):206-213.
    [58] 张新越,欧进萍. CFRP筋的疲劳性能[J]. 材料研究学报,2006,20(6):565-570.
    [59] SONG S T,ZANG H R,DUAN N,et al. Experimental research and analysis on fatigue life of carbon fiber reinforced polymer(CFRP)tendons[J]. Materials,2019,12(20),3383.
    [60] ZHAO X,WANG X,WU Z S,et al. Effect of stress ratios on tension‐tension fatigue behavior and micro‐damage evolution of basalt fiber‐reinforced epoxy polymer composites[J]. Journal of Materials Science,2018,53(13):9545-9556.
    [61] GUO R,XIAN G J,LI C G,et al. Effect of fiber hybrid mode on the tension‐tension fatigue performance for the pultruded carbon/glass fiber reinforced polymer composite rod[J]. Engineering Fracture Mechanics,2022,260,108208.
    [62] LI C G,XIAN G J,LI H. Tension‐tension fatigue performance of a large‐diameter pultruded carbon/glass hybrid rod[J]. International Journal of Fatigue,2019,120:141-149.
    [63] BAI N N,LI H,LAN C M,et al. Influencing factors and sensitivity analysis for the fatigue of FRP wire based on the progressive fatigue damage model[J]. Composite Structures,2024,334,117982.
    [64] 方志,龚畅,杨剑,等. CFRP预应力筋粘结式锚固系统的抗疲劳性能[J]. 公路交通科技,2012,29(7):58-63.
    [65] REIFSNIDER K L,HENNEKE E G,STINCHCOMB W W,et al. Damage mechanics and NDE of composite laminates[M] //HASHIN Z,HERAKOVICH C T. Mechanics of composite materials:recent advances. New York:Pergamon Press Ltd.,1983:399-420.
    [66] WANG C,ZHANG J W. Experimental and analytical study on residual stiffness/strength of CFRP tendons under cyclic loading[J]. Materials,2020,13(24),5653.
    [67] WANG C,ZHANG J W,GONZALEZ-LIBREROS J,et al. A quantitative residual stiffness model for carbon fiber reinforced polymer tendons[J]. Fatigue & Fracture of Engineering Materials & Structures,2024,47(5):2068-2084.
    [68] 中国国家标准化管理委员会. 纤维增强复合材料筋基本力学性能试验方法:GB/T 30022—2013[S]. 北京:中国标准出版社,2013.
    [69] American Concrete Institute. Guide test methods for fiber‐reinforced polymers(FRP)composites for reinforcing or strengthening concrete and masonry structures:ACI 440.3R-12[S]. Farmington Hills:ACI,2012.
    [70] ASTM International. Standard test method for tensile properties of fiber reinforced polymer matrix composite bars:ASTM D7205/D7205M-21[S]. West Conshohocken:ASTM International,2021.
    [71] ASTM International. Standard test method for tensile creep rupture of fiber reinforced polymer matrix composite bars:ASTM D7337/D7337M-12[S]. West Conshohocken:ASTM International,2012.
    [72] ASTM International. Standard test method for tension-tension fatigue of polymer matrix composite materials:ASTM D3479/D3479M-19(Reapproved 2023)[S]. West Conshohocken:ASTM International,2023.
  • 加载中
计量
  • 文章访问数:  37
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-25
  • 刊出日期:  2025-10-31

目录

    /

    返回文章
    返回