| [1] |
孙利民,尚志强,夏烨. 大数据背景下的桥梁结构健康监测研究现状与展望[J]. 中国公路学报,2019,32(11):1-20.
|
| [2] |
陈鑫婷,张军,鲁东明,等. 基于多头卷积自编码器的桥梁结构信号重构与损伤识别方法研究[J]. 振动与冲击,2025,44(6):298-305.
|
| [3] |
NGUYEN Q T,NGUYEN T T,NGUYEN T P. Analysis of vibration characteristics of bridge spans based on the viscoelastic material model:investigating the relationship between material properties and dynamic parameters[J]. Structures,2025,75,108788.
|
| [4] |
杨银枪,康帅,王自法,等. 基于卷积自编码和相关函数的钢框架损伤识别研究[J]. 工业建筑,2024,54(11):78-86.
|
| [5] |
ABDELJABER O,AVCI O,KIRANYAZ S,et al. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks[J]. Journal of Sound and Vibration,2017,388:154-170.
|
| [6] |
GIGLIONI V,VENANZI I,POGGIONI V,et al. Autoencoders for unsupervised real-time bridge health assessment[J]. Computer-Aided Civil and Infrastructure Engineering,2023,38(8):959– 974.
|
| [7] |
TU J,LIU H,LI C,et al. Correntropy-induced weighted gan for bridge anomaly detection[J]. IEEE Sensors Journal,2024,24(4):5335-5346.
|
| [8] |
SHANG Z,SUN L,XIA Y,et al. Vibration-based damage detection for bridges by deep convolutional denoising autoencoder[J]. Structural Health Monitoring,2021,20(4):1880– 1903.
|
| [9] |
DENG A,HOOI B. Graph neural network-based anomaly detection in multivariate time series[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2021,35(5):4027-4035.
|
| [10] |
LIAO J,LI J,CHEN Y,et al. DPDGAD:a dual-process dynamic graph-based anomaly detection for multivariate time series analysis in cyber-physical systems[J]. Advanced Engineering Informatics,2024,61,102547.
|
| [11] |
李行,骆勇鹏,郭旭,等. 强噪声小样本条件下基于图卷积神经网络的结构损伤识别[J]. 地震工程与工程振动,2024,44(3):52-60.
|
| [12] |
ZHAN P,QIN X,ZHANG Q,et al. A novel structural damage detection method via multisensor spatial-temporal graph-based features and deep graph convolutional network[J]. IEEE Transactions on Instrumentation and Measurement,2023,72:1-14.
|
| [13] |
DANG V H,VU T C,NGUYEN B D,et al. Structural damage detection framework based on graph convolutional network directly using vibration data[J]. Structures,2022,38:40-51.
|
| [14] |
DANG V H,LE-NGUYEN K,NGUYEN T T. Semi-supervised vibration-based structural health monitoring via deep graph learning and contrastive learning[J]. Structures,2023,51:158-170.
|
| [15] |
史子凡,郭文华,郭柳君,等. 基于图卷积神经网络的结构损伤识别研究[J/OL]. 铁道科学与工程学报,2025[2025-06-14]. https://doi.org/10.19713/j.cnki.43-1423/u.T20250627.
|
| [16] |
KIM M,SONG J. Seismic damage identification by graph convolutional autoencoder using adjacency matrix based on structural modes[J]. Earthquake Engineering and Structural Dynamics,2024,53(2):815-837.
|
| [17] |
KIM M,SONG J,KIM C W,et al. Near-real-time damage identification under vehicle loads using dynamic graph neural network based on proper orthogonal decomposition[J]. Mechanical Systems and Signal Processing,2025,224,112175.
|
| [18] |
CUSIDO J,ROMERAL L,ORTEGA J A,et al. Fault detection in induction machines using power spectral density in wavelet decomposition[J]. IEEE Transactions on Industrial Electronics,2008,55(2):633-643.
|
| [19] |
ZHANG Z,GENG Z,HAN Y. Graph structure change-based anomaly detection in multivariate time series of industrial processes[J]. IEEE Transactions on Industrial Informatics,2024,20(4):6457-6466.
|
| [20] |
杨少冲,姚远,张凯,等. 基于本征正交分解和卡尔曼滤波的结构损伤识别[J]. 振动与冲击,2023,42(18):304-312.
|
| [21] |
XU W,YANG B,BI F,et al. Dual-graph collaboration:bidirectional fusion graph convolution network for structure multidefect positioning and assessment[J]. IEEE Transactions on Industrial Informatics,2024,20(11):13284-13295.
|