A Steel Structure Surface Corrosion Detection Method Based on UAV Image Recognition
-
摘要: 锈蚀是一种常见的钢结构损伤现象,若不及时发现修复会影响整个结构的安全。以钢结构表面锈蚀为研究对象,提出一种以无人机为载体获取高清图像,基于计算机视觉的钢结构表面锈蚀检测方法。该方法通过无人机获得高清锈蚀图像,构建锈蚀数据集,把YOLOv8模型进行训练改进从而实现高精度的锈蚀目标检测,U_Net模型对检测出的锈蚀区域进行分割,实现锈蚀面积统计。改进的YOLOv8网络模型以YOLOv8-OBB模型为基础,对YOLOv8-OBB模型的主干网络的深层卷积层进行层剪枝并引入上下文锚点注意力模块(CAA)和感受野注意力卷积(RFAConv)、将主干网络的浅层特征信息引出到颈部网络,从而实现特征融合。该方法通过试验验证,锈蚀检测精确度(P)提升3.8%,召回率(R)提升5%,均值平均精度(mAP)提升3.5%,参数量减少了63.2%,浮点运算次数增加了11.1×109次,每秒帧数(FPS)降低了17.47 帧/s。Abstract: Corrosion is a common form of damage in steel structures. If it is not discovered and repaired in time, it will affect the safety of the entire structure. This paper takes the surface corrosion of steel structures as the research object and proposes a method for detecting surface corrosion of steel structures based on computer vision by using drones to obtain high-definition images. This method obtains high-definition corrosion images through drones, constructs a corrosion dataset, and trains and improves the YOLOv8 model to achieve high-precision corrosion target detection. The U_Net model is used to segment the detected corrosion areas, enabling the calculation of the corrosion area. The improved YOLOv8 network model is based on the YOLOv8-OBB model. The deep convolutional layers of the backbone network of the YOLOv8-OBB model are pruned, and the Contextual Anchor Attention (CAA) module and the Receptive Field Attention convolution (RFAConv) are introduced to bring the shallow feature information of the backbone network to the neck network, thereby achieving feature fusion. This method was verified by experiments, resulting in a 3.8% improvement in precision (P), a 5% increase in recall (R), and a 3.5% enhancement in mean Average Precision (mAP) for corrosion detection. Meanwhile, the number of parameters was reduced by 63.2%, while floating-point operations increased by 11.1×109, and frames per second (FPS) decreased by 17.47.
-
Key words:
- steel structure /
- corrosion detection /
- UAV image /
- improved YOLOv8 /
- U_Net
-
[1] 王煜成,张逢伯,许清风. 锈蚀对既有钢结构性能影响研究进展[J]. 施工技术,2020,49(9):34-40. [2] 卢树杰,陈庆诚,文祥,等. 基于无人机的钢结构锈蚀视觉检测[J]. 工业控制计算机,2019,32(7):79-81. [3] 姚志东,卢佳祁,熊梦雅,等. 基于计算机视觉的钢结构表面缺陷智能识别研究综述[J]. 建筑结构,2023,53(24):126-135. [4] 陈法法,董海飞,何向阳,等. 改进 U_Net 网络的钢结构表面锈蚀图像分割方法[J]. 电子测量与仪器学报,2024,38(2):49-57. [5] KHAYATAZAD M,PUE L,WAELE W. Detection of corrosion on steel structures using automated image processing[J]. Developments in the Built Environment,2020,3,100022. [6] ORTIZ A,FRANCISCO B P,EMILIO G F. Vision-based corrosion detection assisted by a micro-aerial vehicle in a vessel inspection application[J]. Sensors,2016,16(12),2118. [7] CAI X,LAI Q,WANG Y,et al. Poly kernel inception network for remote sensing detection.[J/OL]. arXiv preprint arXiv:2403. 06258[2024-03-20]. https://arxiv.org/abs/2403.06258. [8] ZHANG X,LIU C,YANG D,et al. RFAConv:innovating spatial attention and standard convolutional operation[J/OL]. arXiv preprint arXiv:2304. 03198,2023[2024-03-28]. https://arxiv.org/abs/2304.03198. [9] 全国涂料和颜料标准化技术委员会. 涂覆涂料前钢材表面处理 表面清洁度的目视评定 第1部分:未涂覆过的钢材表面和全面清除原有涂层后的钢材:GB/T 8923.1—2011[S]. 北京:中国标准出版社,2011. -
点击查看大图
计量
- 文章访问数: 8
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: