Smart Resilience-Oriented Integrated Innovation Design for Highway Toll Plaza Canopies
-
摘要: 针对国内高速公路收费设施普遍面临的矛盾:抗灾性能欠佳、智能技术应用滞后、地域文脉割裂与资源消耗显著等系统性缺陷,基于韧性基础设施理论框架,提出“智慧管控-文化转译-低碳技术”三位一体设计体系。通过构建环境要素-结构应力多维物联感知体系,实现气象与结构状态实时预警响应;采用参数化算法将地域文化元素转译为空间形态与装饰符号,增强设施与环境的协调性;集成海绵城市技术与风光互补能源系统,构建“能源-水-材”协同的低碳运维模式。依托京雄高速房山北站工程实践验证,系统实现极端天气及时响应、全生命周期能耗降低、文化融合评分提升的综合成效。研究成果可为交通基础设施的韧性提升、文脉延续及可持续运营提供系统性解决方案。Abstract: Addressing systemic flaws in domestic expressway toll facilities—inadequate disaster resilience, lagging adoption of smart technology, fragmented regional cultural context, and significant resource consumption—this study proposes a tripartite design system integrating “smart management, cultural translation, and low-carbon technologies” based on the resilient infrastructure theoretical framework. By establishing a multi-dimensional IoT sensing system for environmental factors and structural stress, real-time early warning and response to meteorological and structural conditions are achieved. Parametric algorithms translate regional cultural elements into spatial forms and decorative symbols, enhancing facility-environment harmony. Sponge city technology and wind-solar hybrid energy systems are integrated to construct a low-carbon operational model that synergizes “energy-water-materials” flows. Validated through the Jingxiong Expressway Fangshan North Station project, the system demonstrates comprehensive outcomes: timely extreme weather response, reduced whole-life-cycle energy consumption, and improved cultural integration scores. This research provides a systematic solution for enhancing resilience, preserving cultural continuity, and enabling sustainable operation of transportation infrastructure.
-
[1] 交通运输部. 中国高速公路收费设施建设白皮书(2023版)[M]. 北京:人民交通出版社,2023. [2] 刘睿健. 高速公路收费站智慧化提升之路[J]. 中国交通信息化,2023,38(10):22-31. [3] 沈阳,朱立,丁雪. 高速公路收费站智能运维监测系统的设计与实现[J]. 中国交通信息化,2022,26(3):112-123. [4] 中华人民共和国住房和城乡建设部. 城市道路交通工程项目规范:GB 55011—2021[S]. 北京:中国建筑工业出版社,2021. [5] IEA. Global energy performance benchmark 2023[R]. Paris:OECD,2023. [6] 赵世宇. 装配式钢桁架加固框架结构抗震性能分析[J]. 矿业工程,2022,20(3):59-69. [7] 杜豫川,刘成龙,吴获非. 新一代智慧高速公路系统架构设计[J]. 中国公路学报,2022,35(4):203-214. [8] van DIJK J. Photovoltaic applications in Dutch highways[C]// ISES Solar World Congress. 2021:118-122. [9] Netherlands Water Partnership. Sustainable highway hydrological design[M]. Amsterdam:NWP Press,2022. [10] YAMAMOTO K. Seismic resilience enhancement of toll plazas[J]. JSCE Proceedings,2022,78(4):101-109. [11] LI X,WANG Y,ZHANG S,et al. LoRa-based SHM systems for bridges[J]. IEEE Internet of Things Journal,2021,8(12):9876-9885. [12] 王海,董石麟,李国强. 基于LSTM的薄膜结构风振动态预警系统研究[J]. 工业建筑,2022,52(8):45-51. [13] 李明,郑健龙,吴智深. 基于改进YOLOv4的桥梁裂缝智能识别系统开发[J]. 工业建筑,2021,51(10):88-94. [14] California Department of Transportation. Caltrans seismic design criteria 2022[S]. Sacramento:California Department of Transportation,2022. [15] European Committee for Standardization. Eurocode 1:actions on structures-part 1-4:general actions-wind loads:EN 1991-1-4[S]. Brussels:European Committee for Standardization,2005. [16] 张彤. 数字建造与传统文化融合[J]. 建筑学报,2022(6):34-39. [17] 张华,陆邵明. 参数化算法驱动的地域建筑文化转译方法研究:以古运河聚落为例[J]. 工业建筑,2023,53(3):134-140. [18] DuPont. Photovoltaic material aging test report[R]. Wilmington:DuPont,2021. [19] 中华人民共和国住房和城乡建设部. 建筑用光伏构件通用技术要求:JG/T 492—2016[S]. 北京:中国建筑工业出版社,2016.. [20] 俞孔坚. 海绵城市技术指南[M]. 北京:中国建筑工业出版社,2019. [21] 陈晨,吕伟华. 再生骨料透水混凝土孔隙率-力学性能耦合效应研究[J]. 工业建筑,2022,52(增刊1):208-213. -
点击查看大图
计量
- 文章访问数: 10
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: