Correlation Analysis of the Key Factors of Facade Shedding of Buildings
-
摘要: 近年来,建筑外立面脱落致人伤亡事故愈发频发,建筑运维安全问题越来越受到关注。因此,保证建筑外立面安全可靠并延长其使用寿命是既有建筑运维阶段的首要工作之一。为了深入探究建筑外立面脱落主要因素,并阐明各因素间存在的关系,收集整理了自2000年以来全国范围内1030件外墙脱落案件,通过梳理归纳出材质类型、使用时间、季节、地区、损失类型、脱落面积、脱落高度、风力和气温共9个要素。采用频数分析方法揭示了各要素间的相互影响规律,并在此基础上采用独立性检验和皮尔逊分析探究了各个要素间的相关程度。结果表明:统计案件中的外保温层、墙面粘贴材料、墙面粉刷材料和墙面钉挂材料发生脱落的平均年限分别为1.47年、5.26年、3.30年和2.49年,明显小于JGJ 144—2019《外墙外保温工程技术标准》规定年限;脱落面积主要集中在0.72~49.50 m2区间,表明脱落情况往往是外立面材料集体脱落;脱落面积与材质类型、地区和时间,损失类型与面积、时间,脱落高度与类型、风力,风力与季节、地区、脱落面积和气温,气温与地区存在相关关系,其中脱落面积与时间和材质类型,脱落高度与类型,风力等级与地区的相关程度最强,相关系数r分别为-0.22、-0.22、-0.27和-0.23,表明小面积脱落跟时间相关性强,相较用于外墙饰面层的粉刷材料、粘贴材料和钉挂材料,外保温层更易产生大范围脱落。外保温层与脱落高度间的相关程度高,外保温层相较于其他外墙材料,更容易受到高度的影响。东北和华北地区的外墙更容易受到强风的影响,从而增加脱落的风险。Abstract: In recent years, the casualty accidents caused by the facade shedding become obvisouly more frequent, making the building operation and maintenance safety issues obtain wide attention. Therefore, ensuring the safety and reliability of building facades as well as prolonging their service life have become one of the most primary tasks during the operation and maintenance phase of existing buildings. In order to investigate the main factors of the building facade shedding and clarify the relations between each other, 1030 cases of external wall shedding across the country since 2000 were collected, and nine essential factors were sorted out including material types, duration of use, seasons, geographical regions, loss types, shedding areas, shedding heights, wind forces and temperatures. The frequency analysis method was employed to reveal interaction patterns among these factors, while independence tests and Pearson analysis were conducted to explore the degree of mutual correlation. It was found that average service life of external insulation layers, tiles, coatings, and exterior-mounted material in the statistical cases reached 1.47 years,5.26 years, 3.30 years, and 2.49 years, respectively, which were evidently less than the age limit in Technical Standard for External Thermal Insulation on Walls(JGJ 144-2019). Shedding areas were pre-dominantly concentrated within the range of 0.72 m2 to 49.50 m2, indicating a tendency for collective shedding mode of facade materials. The shedding area demonstrated correlations with material types, regions and duration of use, and the loss was also related to the shedding area and the duration of use. The heights and types of detachment correlated with wind forces, which was further associated with seasons, regions, the area of detachment, and temperatures. Additionally, temperatures exhibited a correlation with regional characteristics. In particular, the correlation degrees between the shedding area and the duration of use, between shedding area and material types, between the shedding height and types, as well as between the wind force and the area were the highest, the correlation coefficients reached -0.22, -0.22, -0.27 and -0.23, respectively, indicating that the small area of shedding was significantly influenced by the duration of use; in comparison to coatings, tiles, and exterior-mounted material utilized in building finish layers, the exterior insulation layers were more susceptible to produce large-scale shedding. The correlation between the external insulation layer and the height of shedding was noticeable, and the external insulation layer was more likely to be affected by the height than other external wall materials. The exterior walls in Northeast and North China are more susceptible to strong winds, which may increase the risk of shedding.
-
Key words:
- facade shedding /
- frequency analysis /
- chi-square analysis /
- Pearson analysis /
- monitoring main-tenance
-
[1] 王璞瑾,肖建庄,段珍华,等. 建筑物外立面损伤检测智能化发展趋势[J]. 建筑科学与工程学报,2022,39(4):24-37. [2] 任玲玲,童丽萍. 夏季极端环境下住宅墙体EPS保温体系热结构耦合分析[J]. 郑州大学学报(工学版),2010,31(4):15-18. [3] 朱斌,张辉. 基于贝叶斯网络的多高层建筑外饰面砖脱落风险发生概率研究[J]. 三峡大学学报(自然科学版),2014(4):83-86. [4] 闫振滨,刘胜,迟玉凤. 严寒地区预防多层节能建筑外墙外保温薄抹灰涂料脱落技术措施[J]. 建筑技术,2011,42(1):36-37. [5] HSU W L,LIU C C,SHIAU Y C,et al. Discussion on the mate-rial factors for falling of face tile[J]. Sensors and Materials,2019,31(3):1071-1081. [6] HUANG Z J,SUN Y D,GAN L,et al. Durability analysis of building exterior thermal insulation system in hot summer and cold winter area based on ANSYS[J]. Sustainability,2022,14(9),5702. [7] 纪京喆,李志国,李砚波,等. 对多高层建筑外墙防火保温耐久性能的探讨[J]. 建筑科学,2014,30(1):122-125. [8] 高庆敏,杜永胜. 外保温墙体裂缝产生的原因与控制[J]. 建筑科学,2008,24(3):69-72. [9] 卢纹贷,朱红兵. SPSS统计分析[M]. 北京:电子工业出版社,2015:175-176,269-270. [10] 李玉光,杜宏巍. SPSS19.0统计分析入门与提高[M]. 北京:清华大学出版社,2014:226-227. [11] 茆诗松,王静龙,史定华,等. 统计手册[M]. 北京:科学出版社,2003:326-327. [12] 程志明,韩兆洲. 自由度的认识与应用[J]. 统计与决策,2011(12):167-169. [13] COHEN J. Statistical power analysis for the behavioral sciences[M]. London:Routledge,2013. [14] 程士富,杜金柱. 统计学讲义[M]. 北京:中国统计出版社,2009:189-190. [15] 孙万萍. 加强对建筑物外保温工程的监督实践思考[J]. 中国设备工程,2022(14):242-244. [16] 沈阳,徐磊,郑冠雨,等. 考虑风险因素耦合的超高层施工预警方法研究[J]. 郑州大学学报(工学版),2021,42(4):98-104. [17] 王来贵,丁盛鹏,何慧娟,等. 不同粒径砂粒水泥砂浆冻融破坏实验研究[J]. 实验力学,2019,34(1):138-148. [18] 张金花,赵莹,张晓转,等. 外保温系统耐冻融循环作用试验研究[J]. 建筑技术,2016,47(2):149-150. [19] 建军,陈四利,刘作涛,等. 冻融环境对聚合物水泥砂浆粘结强度的影响[J]. 沈阳工业大学学报,2015,37(6):705-709. [20] 靳贻杰,陶勇,张婷,等. 含盐冻土冻结温度及导热系数试验研究[J]. 郑州大学学报(工学版),2023,44(4):120-126. [21] 崔升和,石宇. 浅谈住宅工程外墙渗漏原因及防治措施[J]. 才智,2011(10):29. [22] 刘曙光,郑伟强,周正正,等. 极端暴雨下城市地下空间洪涝风险及灾害防控[J]. 郑州大学学报(工学版),2023,44(2):22-29. [23] 刘家宏,裴羽佳,梅超,等. 郑州“7·20”特大暴雨内涝成因及灾害防控[J]. 郑州大学学报(工学版),2023,44(2):38-45. [24] 缪志君,黄素嘉. 沿海地区高层建筑外墙渗漏的原因与预防[J]. 施工技术,2005(1):69-70. [25] 胡世进. 宁波沿海地区和海岛建筑外墙涂料施工防止泛碱脱落规范意见(一)[J]. 电镀与涂饰,2011,30(4):81-85. [26] 白桦,郭聪敏,刘健新. 紊流强度与积分尺度对结构平均风压与脉动风压雷诺数效应影响研究[J]. 郑州大学学报(工学版),2018,39(2):73-79. [27] ZHENG N L,DIE F L,WEN H S,et al. Field measurement of wind-induced stress on glass facade of a coastal high-rise building[J]. Science China Technological Sciences,2011,54(10):2587-2596. [28] 方旭慧,王柏生. 外墙外保温系统外围护结构安全性研究[J]. 建筑结构,2009,39(7):116-118. [29] 郎松军,张敔,张莉莉. 新建建筑外墙材料脱落的危害与应对措施[J]. 四川建材,2020,46(9):26-27. [30] 刘少华,任宜春,郑智雄,等. 基于航拍图像与改进U-Net的建筑外墙裂缝检测方法[J]. 土木与环境工程学报(中英文),2024,46(1):223-231. [31] 徐教宇. 红外线检测外墙饰面砖技术及其技术规程[J]. 建筑科学,2011,27(增刊1):78-80. [32] 王玮,米庆仁,肖云,等. 基于可见光和红外图像融合的建筑外墙空鼓与脱落识别方法研究[J]. 工业建筑,2024,54(5):51-59. [33] 潘应桂,田水,谷倩,等. 风荷载作用下中空玻璃的挠度研究[J]. 工业建筑,2024,54(10):153-159. [34] 简洪树,金楠,伍永靖邦,等. 既有玻璃幕墙检测技术的研究进展[J]. 工业建筑,2022,52(10):9-15. -
点击查看大图
计量
- 文章访问数: 9
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: