Advances in Preparation and Welding Techniques of Stainless Steel Clad Plates
-
摘要: 不锈钢复合板是一种耐腐蚀性能优、成本低和强度高的钢材,与传统低碳钢和不锈钢相比,不锈钢复合板的应用延长了结构的设计使用寿命,同时降低了全寿命运维成本,在防腐等级高的构筑物中应用综合性价比高。目前,不锈钢复合板已成功应用于压力容器、铁路公路钢桥面板及水利水电工程等多个领域。详细分析了不锈钢复合板的制备及其焊接技术研究现状,重点介绍了真空轧制复合法、爆炸复合法及爆炸-轧制复合法三种主流制备工艺,并从焊接工艺、接头无损检测与性能、高效焊接工艺和焊接有限元模拟等多个方面对复合板焊接进行了全面的探讨,也展望了不锈钢复合板制备与焊接技术的发展趋势。Abstract: The stainless steel clad plates have the advantages of good corrosion resistance, low cost and high strength, compared with the traditional mild steel and stainless steel, the application of stainless steel clad plates extend the design service life of the structure, while reducing the whole life operation and maintenance costs, showing a relatively high comprehensive price in the application of high corrosion-resistant grade structures. At present, stainless steel clad plates have been successfully applied to pressure vessels, railroad highway steel bridge panels and water conservancy and hydropower projects in many fields. The paper analyzed the research status of preparation and welding techniques of stainless steel clad plates, focusing on the vacuum rolling cladding method, explosion cladding method and explosion-rolling cladding method of the three mainstream preparation processes, the welding technique of clad plates were discussed comprehensively from the aspects of welding process, joint non-destructive testing and performance, efficient welding process and welding finite element simulation and so on, as well as the development trend of the preparation and welding technique of stainless steel clad plates.
-
[1] 谢曼, 干勇, 王慧. 面向2035的新材料强国战略研究[J]. 中国工程科学, 2020, 22(5): 1-9. [2] 班慧勇, 梅镱潇, 石永久. 不锈钢复合钢材钢结构研究进展[J]. 工程力学, 2021, 38(6): 1-23. [3] LESUER D R, SYN C K, SHERBY O D, et al. Mechanical behaviour of laminated metal composites[J]. International Materials Reviews, 1996, 41(5): 169-197. [4] LI L, YIN F X, NAGAI K. Progress of laminated materials and clad steels production[J]. Materials Science Forum, 2011, 675-677: 439-447. [5] LIU X, BAI R, UY B, et al. Material properties and stress-strain curves for titanium-clad bimetallic steels[J]. Journal of Constructional Steel Research, 2019, 162, 105756. [6] 陈忱. 不锈钢/碳钢复合板的焊接工艺及接头组织性能研究[D]. 南京: 南京航空航天大学, 2013. [7] 秦建平, 田雅琴, 陈惠. 复合钢板的发展现状[J]. 中国稀土学报, 2005(S2): 178-181. [8] 郑凯锋, 张宇, 衡俊霖, 等. 高强度耐候钢及其在桥梁中的应用与前景[J]. 哈尔滨工业大学学报, 2020, 52(3): 1-10. [9] BAN H, SHI G. A review of research on high-strength steel structures[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2018, 171(8): 625-641. [10] 董桂萍, 王少刚, 季小辉. 不锈钢复合板制备技术及其焊接性探讨[J]. 焊接, 2008(6): 10-14,69. [11] 查春和, 戴燕红, 杨梅梅. 我国不锈钢复合板材的制造技术及应用[J]. 轧钢, 2018, 35(6): 55-61. [12] LANZON J M, CARDEW-HALL M J, HODGSON P D. Characterising frictional behaviour in sheet metal forming[J]. Journal of Materials Processing Technology, 1998, 80-81: 251-256. [13] 杨牧南, 左孝青, 赵明伟, 等. 不锈钢复合板制备技术研究进展[J]. 热加工工艺, 2012, 41(20): 93-96. [14] 李龙, 张心金, 刘会云, 等. 不锈钢复合板的生产技术及工业应用[J]. 轧钢, 2013, 30(3): 43-47. [15] 郑远谋. 镍-不锈钢爆炸+轧制复合板[J]. 钢铁研究, 2000(6): 57-61. [16] 轧制技术及连轧自动化国家重点实验室. 真空制坯复合轧制技术与工艺[M]. 北京: 冶金工业出版社, 2014. [17] 倪红卫, 高娟, 唐利民. 不锈钢复合板制备技术的发展[J]. 特殊钢, 2002(3): 4-6. [18] 孙浩, 王克鲁. 不锈钢复合板生产方法和制备技术的探讨[J]. 上海金属, 2005(1): 50-54. [19] 安朴艳. 层状金属复合板生产方法专利技术综述[J]. 中国发明与专利, 2019, 16(S2): 100-106. [20] 肖丰强. 2205/Q235B真空轧制复合板组织性能及搅拌摩擦焊接工艺研究[D]. 天津: 天津大学, 2022. [21] 李龙, 毕建华, 周德敬. 我国金属复合板带材的生产及应用[J]. 轧钢, 2017, 34(2): 43-47. [22] KAYA Y, KAHRAMAN N. An investigation into the explosive welding/cladding of Grade A ship steel/AISI 316L austenitic stainless steel[J]. Materials & Design (1980—2015), 2013, 52: 367-372. [23] WRONKA B. Testing of explosive welding and welded joints. Wavy character of the process and joint quality[J]. International Journal of Impact Engineering, 2011, 38(5): 309-313. [24] KACAR R, ACARER M. An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel[J]. Journal of Materials Processing Technology, 2004, 152(1): 91-96. [25] 李正华, 彭文安. 爆炸-轧制法制取不锈钢-钢双金属复合板[J]. 稀有金属材料与工程, 1984(6): 28-32,81. [26] 郑远谋, 张胜军. 不锈钢-碳钢大厚复合板坯的爆炸焊接和轧制[J]. 钢铁研究学报, 1996(4): 14-19. [27] TSUYAMA S. Thick plate technology for the last 100 years: a world leader in thermo mechanical control process[J]. ISIJ International, 2015, 55(1): 67-78. [28] 王廷溥. 不锈复合钢板生产技术发展现状[J]. 钢铁, 1986(1): 47-51. [29] 李正华. 生产复合板的主要方法及其基本特点[J]. 稀有金属材料与工程, 1990(1): 71-74. [30] 田雅琴, 秦建平, 李小红. 金属复合板的工艺研究现状与发展[J]. 材料开发与应用, 2006(1): 40-43. [31] 李龙, 刘会云, 张心金, 等. 金属复合板表面处理技术的研究现状及发展[J]. 表面技术, 2012, 41(5): 124-128. [32] FENG Y, YU H, LUO Z, et al. The impact of surface treatment and degree of vacuum on the interface and mechanical properties of stainless steel clad plate[J]. Materials, 2018, 11(9), 1489. [33] WANG S, LIU B, ZHANG X, et al. Microstructure and interface fracture characteristics of hot-rolled stainless steel clad plates by adding different interlayers[J]. Steel Research, 2020, 91(4), 1900604. [34] 张心金, 李龙, 刘会云, 等. 中间夹层在金属复合板制造过程中的应用[J]. 轧钢, 2013, 30(6): 45-49. [35] 李龙, 张心金, 刘刚, 等. 界面Ni层对热轧不锈钢复合板结合性能的影响[J]. 材料热处理学报, 2015, 36(1): 80-85. [36] 祖国胤, 于九明, 温景林. 中间夹层对不锈钢复合板界面结合性能的影响[J]. 东北大学学报, 2003(11): 1053-1056. [37] 曾润根. 热双金属室温固相复合[J]. 上海金属(钢铁分册), 1982(2): 47-54. [38] 张胜华, 郭祖军. 铝/铜轧制复合板的界面结合机制[J]. 中南工业大学学报, 1995(4): 509-513. [39] 汤富麟. 异步单机连轧研究[J]. 钢铁, 1979(6): 43-55. [40] 张永福, 丁修堃. 双金属固相复合异步轧制新工艺[J]. 东北工学院学报, 1991(6): 619-624. [41] 魏伟, 史庆南. 铜/钢双金属板异步轧制复合机理研究[J]. 稀有金属, 2001(4): 307-311. [42] 祖国胤, 李小兵, 宋滨娜, 等. 异步轧制对钢/铝复合板组织与性能的影响[J]. 功能材料, 2010, 41(12): 2083-2086. [43] 谢广明, 骆宗安, 王光磊, 等. 真空轧制不锈钢复合板的组织和性能[J]. 东北大学学报(自然科学版), 2011, 32(10): 1398-1401. [44] 王光磊, 骆宗安, 谢广明, 等. 首道次轧制对复合钢板组织和性能的影响[J]. 东北大学学报(自然科学版), 2012, 33(10): 1431-1435. [45] 骆宗安, 谢广明, 胡兆辉, 等. 特厚钢板复合轧制工艺的实验研究[J]. 塑性工程学报, 2009, 16(4): 125-128. [46] 骆宗安, 谢广明, 王光磊, 等. 界面微观组织对真空轧制复合纯钛/低合金高强钢界面力学性能的影响[J]. 材料研究学报, 2013, 27(6): 569-575. [47] 骆宗安, 王光磊, 谢广明, 等. 铌夹层对真空轧制复合Ti不锈钢板的显微组织及性能的影响[J]. 中国有色金属学报, 2013, 23(12): 3335-3340. [48] 中国钢铁工业协会. 《钢铁行业2020—2035年技术发展预测报告》提要(上)[J]. 中国钢铁业, 2021(2): 43-46. [49] 中国钢铁工业协会. 《钢铁行业2020—2035年技术发展预测报告》提要(中)[J]. 中国钢铁业, 2021(3): 10-15. [50] 中国钢铁工业协会. 《钢铁行业2020—2035年技术发展预测报告》提要前言[J]. 中国钢铁业, 2021(1): 33-34. [51] 中国钢铁工业协会. 《钢铁行业2020—2035年技术发展预测报告》提要(下)[J]. 中国钢铁业, 2021(4): 26-29,34. [52] 李茂林, 浦承皓, 焦殿辉, 等. 镍基耐蚀合金复合板的制备及结合机理研究[J]. 锻压装备与制造技术, 2013, 48(5): 83-87. [53] 田德旺. 双金属复合材料冷轧变形行为及结合强度的研究[D]. 武汉: 武汉科技大学, 2006. [54] 王艳松, 李文亚, 杨夏炜, 等. 冷压焊界面结合机理与结合强度研究现状[J]. 材料工程, 2016, 44(4): 119-130. [55] 雷冬. 不锈钢/碳钢复合轧制性能研究[D]. 武汉: 武汉科技大学, 2021. [56] 陈家本. 复合钢及其焊接基础[J]. 造船技术, 1988(10): 22-28. [57] 中国国家标准化管理委员会. 不锈钢复合钢板焊接技术要求: GB/T 13148—2008[S]. 北京: 中国标准出版社, 2008. [58] 陈春燕, 杨巨顺, 冯可梁, 等. 一种有效提高不锈钢复合板焊接质量的措施[J]. 电焊机, 2022, 52(5): 117-122. [59] 于彬. 不锈钢复合板焊接质量控制研究[J]. 热加工工艺, 2010, 39(11): 173-174. [60] ZHU M, WU W, QIAN W, et al. A brief review on welding of stainless steel clad plates: issues and future perspectives[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(1/2): 49-59. [61] 金玉龙. 不锈钢复合板碳扩散及组织性能研究[D]. 秦皇岛: 燕山大学, 2020. [62] 车昌盛. 高铬镍不锈钢焊条性能及结晶模式研究[D]. 南京: 南京理工大学, 2013. [63] 陈忱, 王少刚, 翟伟国, 等. 405/Q245R不锈钢复合板焊接工艺及接头组织与性能[J]. 压力容器, 2011, 28(8): 16-21. [64] 李明鉴, 李齐. 不锈复合钢板的焊接[J]. 焊接技术, 2004(6): 33-34,40. [65] 邱涛, 伍碧霞, 陈群燕, 等. 不锈钢复合钢板焊接接头性能分析[J]. 电焊机, 2013, 43(4): 83-87. [66] 田明杰, 陈行, 张予坤, 等. 建筑用复合钢板的焊接工艺及焊后组织与性能[J]. 金属热处理, 2015, 40(6): 110-115. [67] 吴楠. 铝铜层状复合板搅拌摩擦焊接研究[D]. 西安: 西安建筑科技大学, 2014. [68] MENG Y, KANG K, GAO M, et al. Microstructures and properties of single-pass laser-arc hybrid welded stainless clad steel plate[J]. Journal of Manufacturing Processes, 2018, 36: 293-300. [69] WANG S G, DONG G P, MA Q H. Welding of duplex stainless steel composite plate: influence on microstructural development[J]. Materials and Manufacturing Processes, 2009, 24(12): 1383-1388. [70] DHIB Z, GUERMAZI N, GASPÉRINI M, et al. Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: Microstructure and mechanical properties before and after welding[J]. Materials Science and Engineering: A, 2016, 656: 130-141. [71] 张桂红, 曾小军, 唐元生. 不锈钢复合材料焊接工艺探讨[J]. 石油化工设备技术, 2018, 39(1): 30-33. [72] TORBATI A M, MIRANDA R M, QUINTINO L, et al. Optimization procedures for GMAW of bimetal pipes[J]. Journal of Materials Processing Technology, 2011, 211(6): 1112-1116. [73] 李素娟, 张彦茹. 不锈钢复合板的焊接[J]. 安装, 2002(5): 15-16. [74] 黄本生, 陈鹏, 张荣副, 等. 316L/X65双金属复合管焊接接头组织与性能[J]. 钢铁, 2016, 51(5): 69-75. [75] 韩福江, 姜影, 王鹏, 等. 316L/15CrMoR复合板焊接接头腐蚀性能分析[J]. 中国化工装备, 2012, 14(3): 33-37. [76] 王帅. 不锈钢复合板界面组织调控和韧化机理的研究[D]. 天津: 河北工业大学, 2021. [77] 贾登峰, 赵菲, 黄庆学, 等. 不锈钢复合板的开发及其在焊接工程中的应用[J]. 热加工工艺, 2019, 48(10): 21-24,30. [78] 张俊哲. 无损检测技术及其应用[M]. 北京: 科学出版社, 2010. [79] 丁守宝,刘富君. 无损检测新技术及其应用[M]. 北京: 高等教育出版社, 2012. [80] LI M, HAYWARD G. Ultrasound nondestructive evaluation (NDE) imaging with transducer arrays and adaptive processing[J]. Sensors, 2011, 12(1): 42-54. [81] 吴海腾. 基于相控阵超声成像的圆柱类部件自动化无损检测理论与实践的研究[D]. 杭州: 浙江大学, 2017. [82] 刚铁, 迟大钊, 袁媛. 基于合成孔径聚焦的超声TOFD检测技术及图像增强[J]. 焊接学报, 2006(10): 7-10,113. [83] 杜英华. 合成孔径聚焦超声成像技术研究[D]. 天津: 天津大学, 2011. [84] 林绳准. 复合钢板对接焊缝中横向裂纹的超声波检测[J]. 石油工程建设, 1991(5): 38-39. [85] 郑文江, 曹福想, 郭少宏, 等. 不锈钢复合板对接焊缝超声波检测中的定位误差[J]. 无损检测, 2016, 38(1): 49-51,78. [86] 马雯波, 蔡青, 邓莉莹. 爆炸复合板压力容器径向裂纹的无损检测及其安全性分析[J]. 焊接学报, 2018, 39(10): 54-60,131. [87] 林文光, 赵颖, 邬志刚. 双复层不锈复合钢板的焊接性能试验研究[J]. 内蒙古工业大学学报(自然科学版), 2001(1): 39-42. [88] 李晓琼, 刘永斌. 不锈复合钢板焊接质量控制[J]. 电焊机, 2009, 39(6): 83-85. [89] 张亚军, 岳宗洪. 爆炸复合321/Q370qD双金属板的疲劳性能[C]//第十四届全国疲劳与断裂学术会议论文集. 北京: 2008. [90] BAN H, ZHU J, SHI G. Cyclic loading tests on welded connections of stainless-clad bimetallic steel and modelling[J]. Journal of Constructional Steel Research, 2020, 171, 106140. [91] LIU B X, CHEN C X, YIN F X, et al. Microstructure analysis and weldability investigation of stainless steel clad plate[M]. Cham: Springer International Publishing, 2017: 425-433. [92] 陈忱, 王少刚, 俞旷. 304L/SA516Gr70不锈钢复合板焊接接头的耐蚀性研究[J]. 石油化工腐蚀与防护, 2012, 29(1): 9-13. [93] 田晓军, 王鹏, 张罡, 等. 不锈钢复合板焊接接头晶间腐蚀失效分析[J]. 压力容器, 2012, 29(3): 65-70,64. [94] PARK J W, LEE C K. Mechanical properties and sensitization on clad steel welding design[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(11): 1939-1945. [95] HU X D, YANG Y, SONG M. Experimental and numerical investigations on the thermomechanical behavior of 304 stainless steel/Q345R composite plate weld joint[J]. Materials, 2019, 12(21), 3489. [96] 王莅, 吴志生, 李岩, 等. 坡口形式对304/Q345复合管焊接接头残余应力影响的数值模拟研究[J]. 焊接技术, 2020, 49(3): 5-10. [97] JIANG W, YANG B, GONG J M, et al. Effects of clad and base metal thickness on residual stress in the repair weld of a stainless steel clad plate[J]. Journal of Pressure Vessel Technology, 2011, 133(6), 061401. [98] JIANG W, XU X P, GONG J M, et al. Influence of repair length on residual stress in the repair weld of a clad plate[J]. Nuclear Engineering and Design, 2012, 246: 211-219. [99] JIANG W, LUO Y, WANG H, et al. Effect of impact pressure on reducing the weld residual stress by water jet peening in repair weld to 304 stainless steel clad plate[J]. Journal of Pressure Vessel Technology, 2015, 137(3), 031401. [100] JIANG W, LIU Z, GONG J M, et al. Numerical simulation to study the effect of repair width on residual stresses of a stainless steel clad plate[J]. International Journal of Pressure Vessels and Piping, 2010, 87(8): 457-463. [101] MISHRA R S, MA Z Y. Friction stir welding and processing[J]. Materials Science and Engineering: R: Reports, 2005, 50(1/2): 1-78. [102] LIU G, MURR L E, NIOU C S, et al. Microstructural aspects of the friction-stir welding of 6061-T6 aluminum[J]. Scripta Materialia, 1997, 37(3): 355-361. [103] RHODES C G, MAHONEY M W, BINGEL W H, et al. Effects of friction stir welding on microstructure of 7075 aluminum[J]. Scripta Materialia, 1997, 36(1): 69-75. [104] JOHN R. Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloys[J]. International Journal of Fatigue, 2003, 25(9-11): 939-948. [105] ZHU X K, CHAO Y J. Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel[J]. Journal of Materials Processing Technology, 2004, 146(2): 263-272. [106] SAEID T, ABDOLLAH-ZADEH A, ASSADI H, et al. Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel[J]. Materials Science and Engineering: A, 2008, 496(1/2): 262-268. [107] 彭江涛. Al-Cu-Mg-Ag/Ti轧制复合界面及Al-Cu-Mg-Ag合金搅拌摩擦焊工艺研究[D]. 长沙: 中南大学, 2013. [108] 吴琼. 镁合金/铝合金复合板焊接技术研究[D]. 北京: 北京理工大学, 2016. [109] TRICARICO L, SPINA R. Experimental investigation of laser beam welding of explosion-welded steel/aluminum structural transition joints[J]. Materials & Design, 2010, 31(4): 1981-1992. [110] GOU N N, ZHANG J X, ZHANG L J, et al. Single pass fiber laser butt welding of explosively welded 2205/X65 bimetallic sheets and study on the properties of the welded joint[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(9-12): 2539-2549. [111] MENG Y, GAO M, ZENG X. Effects of arc types on the laser-arc synergic effects of hybrid welding[J]. Opt. Express, 2018, 26(11), 14775. [112] WANG H, NAKANISHI M, KAWAHITO Y. Effects of welding speed on absorption rate in partial and full penetration welding of stainless steel with high brightness and high power laser[J]. Journal of Materials Processing Technology, 2017, 249: 193-201. [113] MENG Y, LI G, GAO M, et al. Effects of groove parameters on space constraint of narrow gap laser-arc hybrid welding[J]. Journal of Manufacturing Processes, 2018, 33: 144-149. [114] ZHANG L J, BAI Q L, NING J, et al. A comparative study on the microstructure and properties of copper joint between MIG welding and laser-MIG hybrid welding[J]. Materials & Design, 2016, 110: 35-50. [115] ZHANG C, GAO M, JIANG M, et al. Effect of weld characteristic on mechanical strength of laser-arc hybrid-welded Al-Mg-Si-Mn aluminum alloy[J]. Metall Mater. Trans. A, 2016, 47(11): 5438-5449. [116] KOBAYASHI K, NISHIMURA Y, IIJIMA T, et al. Practical application of high efficiency twin-arc TIG welding method (Sedar-TIG) for pclng storage tank[J]. Weld World, 2004, 48(7/8): 35-39. [117] LENG X S, ZHANG G J, WU L. Experimental study on improving welding efficiency of twin electrode TIG welding method[J]. Science and Technology of Welding and Joining, 2006, 11(5): 550-554. [118] ZHANG G, XIONG J, GAO H, et al. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113(15): 1938-1945. [119] 李龙, 祝志超, 周德敬. 有限元分析在金属层状复合材料开发中的应用[J]. 南方金属, 2015(6): 1-9,17. [120] LI Z, ZHAO J, JIA F, et al. Analysis of flow behaviour and strain partitioning mechanism of bimetal composite under hot tensile conditions[J]. International Journal of Mechanical Sciences, 2020, 169, 105317. [121] LI Z, ZHAO J, JIA F, et al. Analysis of bending characteristics of bimetal steel composite[J]. International Journal of Mechanical Sciences, 2018, 148: 272-283. [122] LI Z, ZHAO J, JIA F, et al. Numerical and experimental investigation on the forming behaviour of stainless/carbon steel bimetal composite[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(1/4): 1075-1083. [123] LI H, ZHANG L, ZHANG B, et al. Microstructure Characterization and Mechanical Properties of Stainless Steel Clad Plate[J]. Materials, 2019, 12(3), 509. [124] 祝志超, 李龙, 殷福星. 不锈钢复合板界面剪切试验的有限元分析[J]. 一重技术, 2013(2): 58-61. [125] JIANG W, FAN Z, LI C. Improved steel/aluminum bonding in bimetallic castings by a compound casting process[J]. Journal of Materials Processing Technology, 2015, 226: 25-31. [126] JIANG W C, WANG B Y, GONG J M, et al. Finite element analysis of the effect of welding heat input and layer number on residual stress in repair welds for a stainless steel clad plate[J]. Materials & Design, 2011, 32(5): 2851-2857. [127] 涂善东, 蒋文春. 中子衍射和有限元法研究不锈钢复合板补焊残余应力[J]. 金属学报, 2012, 48(12): 1525-1529. [128] MOTARJEMI K A, KOÇAK M, VENTZKE V. Mechanical and fracture characterization of a bi-material steel plate[J]. International Journal of Pressure Vessels and Piping, 2002, 79(3): 181-191. [129] DHIB Z, GUERMAZI N, KTARI A, et al. Mechanical bonding properties and interfacial morphologies of austenitic stainless steel clad plates[J]. Materials Science and Engineering: A, 2017, 696: 374-386. [130] BAN H, BAI R, CHUNG K F, et al. Research progress on material properties of clad steel[C]//Proceedings 12th International Conference on Advances in Steel-Concrete Composite Structures-ASCCS 2018. Universitat Politècnica València, 2018. [131] SHEN W, FENG L, FENG H, et al. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material[J]. Results in Physics, 2017, 7: 529-534. [132] BAN H, BAI R, YANG L, et al. Mechanical properties of stainless-clad bimetallic steel at elevated temperatures[J]. Journal of Constructional Steel Research, 2019, 162, 105704. [133] DE PAULA R G, ARAUJO C R, LINS V D F C, et al. Corrosion resistance of explosion cladding plate of carbon steel and 316L stainless steel[J]. Corrosion Engineering, Science and Technology, 2012, 47(2): 116-120. [134] 王春雨, 覃春林, 王鑫宇. 热加工对复合板不锈钢表层晶间腐蚀的影响[J]. 表面技术, 2013, 42(1): 25-28. [135] 李增平, 花贺鑫, 林炜, 等. 基于S30408+Q345R复合钢板储罐安装技术研究与应用[J]. 安装, 2022(S1): 234-235. [136] 漆卫国. 三峡工程泄洪深孔不锈复合钢板的焊接工艺[J]. 焊接技术, 2001(3): 9-11. [137] 马云飞. 川藏铁路大渡河特大桥锚洞对隧道安全影响评价[J]. 铁道标准设计, 2021, 65(10): 60-65. [138] 李彦国, 薛喆彦, 陈超, 等. 铁路桥梁用S31603+Q500qE高强度复合钢板焊接工艺研究[J]. 焊接技术, 2023, 52(9): 64-68. [139] 李江刚, 石建华, 张巨生. 鳊鱼洲长江大桥南汊航道桥施工控制关键技术[J]. 桥梁建设, 2022, 52(4): 8-15. [140] 朱秀涛, 金晓东. 鳊鱼洲长江大桥南汊航道桥钢锚箱施工关键技术[J]. 世界桥梁, 2023, 51(6): 28-33. [141] 张丛, 孙洪斌, 姜金凤, 等. 潍莱铁路钢桁桥车桥耦合振动分析及行车安全性评估[J]. 铁道科学与工程学报, 2023, 20(10): 3989-3997. [142] 中国建材报. 引江济淮淠河总干渠渡槽荣获2023年IBC大奖[J]. 江西建材, 2023(5): 470. [143] 苏国明. 杭绍台铁路椒江特大桥主桥钢桁梁设计[J]. 桥梁建设, 2018, 48(6): 99-103. [144] 唐贺强, 徐恭义. 五峰山长江大桥三块式主索鞍设计、制造与施工[J]. 桥梁建设, 2022, 52(6): 8-15. [145] 田永强. 五峰山长江大桥主缆架设快速施工方法研究[J]. 施工技术(中英文), 2023, 52(6): 1-5,12. [146] 杨忠良. 揭惠铁路跨梅汕高铁特大桥槽箱组合梁设计[J]. 世界桥梁, 2023, 51(3): 21-28. [147] 杨峰, 齐金朋. 合肥铁路枢纽南环线(114.75+229.50+114.75) m钢桁柔性拱焊接工艺试验研究[J]. 铁道标准设计, 2011(7): 58-65.
点击查看大图
计量
- 文章访问数: 16
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0