Experimental on Mechanical Properties of Interlocking Cable-Membrane Connections in Double-Layer Orthogonal Cable Systems
-
摘要: 双层正交索膜结构体系中,索膜连接方式可采用铝制咬合式节点,节点通过拼装的互咬式型材对折面膜材施以夹持作用。为探究咬合式索膜连接节点破坏模式与力学性能,共设计了4组静力加载对照试验,考虑了膜材折面角度和脊膜保护措施因素的影响,获得了咬合式节点的破坏模式与承载能力,并利用有限元软件分析了节点的应力与应变发展规律。试验结果表明:当膜材强度不足时,膜材将沿型材端部边缘撕裂破坏;当膜材强度足够时,节点穿膜绳将脱落造成节点破坏。膜材折角增大会加剧咬合式型材变形;咬合式型材薄弱位置分别位于被咬入侧中部及咬入侧端部位置。保护膜作用下,120°折角膜材节点整体承载能力提升19.3%,140°折角膜材节点整体承载能力影响不大。Abstract: The cable-membrane connection of the double-layer orthogonal cable system adopts an aluminum interlocking connection, and the interlocking connection exerts a clamping effect on the folded membrane through the assembled interlocking components. In order to explore the failure mode and mechanical properties of the cable-membrane interlocking connection, a static loading test was carried out. Four groups of comparative tests were designed to investigate the failure mode and bearing capacity of the connection. Factors such as the membrane folding angle and the ridge membrane protection measures were respectively considered. The failure mode and bearing capacity of the connection were obtained, and the stress distribution of the connection was analyzed using the finite element software. The experimental results indicated that when the strength of the membrane was insufficient, the membrane would tear along the edge of the end of the profile. When the strength of the membrane was sufficient, the penetrating rope would fall off and cause the connection to fail. The increase of the membrane folding angle would be beneficial to the deformation of the interlocking components. The weak positions of the interlocking connection were located at the middle of the interlocked side and the end of the interlocking side, respectively. At a 120° membrane folding angle, the bearing capacity of the connection with the protective membrane increased by 19.3%. At a 140° membrane folding angle, the protective membrane had little effect on the bearing capacity of the connection.
-
[1] 李道正,薛素铎. 膜结构连接节点分析[J]. 工程建设与设计,2008(8):4-8. [2] 方卫. 世博轴索膜结构的关键构件及节点设计[J]. 空间结构,2011,17(2):76-83. [3] 刘书贤,左潇宇,路沙沙,等. 预应力张拉膜结构节点破坏分析及试验研究[J]. 建筑结构,2020,50(5):93-98. [4] 殷志祥,李秀晨,焦东,等. 膜结构螺栓夹板与U形夹具连接节点的破坏试验研究[J]. 铁道科学与工程学报,2019,16(3):788-795. [5] 徐晓明,陈伟,史炜洲,等. 西安国际足球中心屋盖钢结构设计[J]. 建筑结构,2023,53(1):47-53. [6] 武岳,胥传喜. 膜结构设计(4)膜结构的节点和相关结构设计[J]. 工业建筑,2004,34(9):87-92. [7] 中国工程建设标准化协会. 膜结构技术规程:CECS 158 ∶2015[S]. 北京:中国计划出版社,2015. [8] 中国工程建设标准化协会. 不锈钢结构技术规程:CECS 410 ∶2015[S]. 北京:中国计划出版社,2015. [9] 中国国家标准化管理委员会. 建筑防水卷材试验方法:GB/T 328.9—2007[S]. 北京:中国标准出版社,2007. -
点击查看大图
计量
- 文章访问数: 7
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: