Research on the Resistance of High-Low Leg Transmission Towers to Surface Horizontal Deformation in Mining Affected Areas
-
摘要: 为评估采动地表变形对高低腿输电铁塔安全性的影响,以典型220 kV铁塔为研究对象,建立了该型铁塔的等高腿、高低腿(级差2 m)有限元模型,分析了不同类型和方向的水平地表变形对铁塔结构受力变化特征的影响规律,获得了铁塔抗地表水平变形的能力。研究结果表明:在水平地表变形下,高低腿、等高腿铁塔均以第一、第二交叉斜材或横隔材屈曲为主要标志;铁塔抵抗斜方向(30°,45°,60°)地表变形的能力显著低于0°和90°方向,其中60°方向抗变形能力最差,仅为0°方向的21.8%~29.9%、90°方向的18.1%~31.4%;铁塔抗拉伸变形能力较抗压缩变形能力更差;高低腿铁塔在相同情况下的抗地表水平变形能力显著低于等高腿铁塔,最大相差40.0%。因此在采动区建设高低腿输电铁塔时,应考虑地表变形的作用方向,对铁塔的抗地表变形性能进行专门研究,并重点关注其斜向抗地表变形的能力。Abstract: In order to evaluate the impact of mining-induced surface deformation on the safety of transmission towers with high and low legs, this study investigates a typical 220 kV tower. Finite element models of the tower were established for both equal-leg and high-low leg configurations (with a 2 m leg height difference). The influence of types and directions of horizontal surface deformation on the force variation characteristics of the tower structure was studied and analyzed, and the capacity of the tower to resist surface horizontal deformation was obtained. The results indicate that buckling of the primary or secondary X-bracings or diaphragms is the primary failure indicator under horizontal surface deformation. The tower's resistance to deformation in oblique directions (30°, 45°, 60°) is significantly lower than in the 0° or 90° directions, with the 60° direction exhibiting the poorest deformation resistance, only 21.8%-29.9% in the 0° direction and 18.1%-31.4% in the 90° direction. Furthermore, the tower's resistance to tensile deformation is lower than its resistance to compressive deformation. The high-low leg tower exhibits significantly lower resistance to surface horizontal deformation than the equal-leg tower under the same conditions, with a maximum difference of 40.0%. Therefore, when constructing high-low leg transmission towers in mining areas, the direction of surface deformation must be considered, and the anti-surface-deformation performance, particularly in oblique directions, requires specific evaluation.
-
Key words:
- mining area /
- high and low legs /
- transmission tower /
- surface deformation /
- anti-deformation
-
[1] 刘涛. 采动区自立式输电铁塔破坏机理及抗变形能力研究[D]. 徐州:中国矿业大学,2008. [2] 刘林. 采空区新建自立式输电转角塔的抗变形技术研究[D]. 徐州:中国矿业大学,2008. [3] 郭文兵,雍强. 采动影响下高压线塔与地基、基础协同作用模型研究[J]. 煤炭学报,2011,36(7):1075-1080. [4] 郭文兵,袁凌辉,郑彬. 地表倾斜变形对高压线铁塔的影响研究[J]. 河南理工大学学报(自然科学版),2012,31(3):285-290. [5] 袁广林,杨庚宇,张云飞. 地表变形对输电铁塔内力和变形的影响规律[J]. 煤炭学报,2009,34(8):1043-1047. [6] 袁广林,张云飞,陈建稳,等. 塌陷区输电铁塔的可靠性评估[J]. 电网技术,2010,34(1):214-218. [7] 袁广林,陈建稳,杨庚宇,等. 动态地表变形对输电铁塔内力和变形的影响[J]. 河海大学学报(自然科学版),2010,38(3):284-289. [8] SHU Q J,YUAN G L,GUO G L,et al. Limits to foundation displacement of an extra high voltage transmission tower in a mining subsidence area[J]. International Journal of Mining Science and Technology,2012,22(1):13-18. [9] 刘鸣. 双回路直线型圆管角钢组合型输电塔静动力分析[D]. 青岛:山东科技大学,2012. [10] 王鑫. 采动区110kV输电铁塔抗变形机理及加固技术研究[D]. 徐州:中国矿业大学,2010. [11] 张先扬. 沉陷区复合基础跨越塔抗变形性能及技术研究[D]. 徐州:中国矿业大学,2009. [12] 谭晓哲. 输电铁塔开孔复合板基础抗地表变形性能研究[D]. 徐州:中国矿业大学,2015. [13] 刘鲁杰. 特高压输电铁塔结构分析及抗地表变形性能研究[D]. 徐州:中国矿业大学,2018. [14] 叶盛. 采动区110kV输电铁塔抗地表变形及抗风性能研究[D]. 徐州:中国矿业大学,2015. [15] 孙冬明. 采动区送电线路铁塔力学计算模型及塔-线体系共同作用机理研究[D]. 徐州:中国矿业大学,2009. [16] 仲崇硕. 地表变形作用下输电塔线体系的风振响应和承载性能研究[D]. 徐州:中国矿业大学,2019. -
点击查看大图
计量
- 文章访问数: 5
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: