Comparative Study on Surface Treatment Processes of CFRP Smooth Rod-Cable Bonded Anchoring Area
-
摘要: 碳纤维复合材料(CFRP)具有轻质高强、耐腐蚀和耐疲劳等优点,其中CFRP棒索在桥梁结构、大跨空间结构中应用更具优势。CFRP索锚固区的表面处理工艺是影响锚固系统承载力性能的关键因素。针对CFRP光面棒索表面处理工艺进行了研究,对比CFRP棒索锚固性能在不同表面处理工艺情况下的提升效果。结果表明:采用16目砂纸打磨并黏结26~40目石英砂处理CFRP棒索表面,可将锚固节点承载力提升361.1%。研究成果可为改进CFRP棒索锚固体系提供重要依据。Abstract: Carbon fiber composite materials (CFRP) have the advantages of light weight, high strength, corrosion resistance, and fatigue resistance. Among them, CFRP rod cables are more advantageous in bridge structures and long-span space structures. The surface treatment process of the CFRP cable anchoring area is the key to affecting the bearing capacity performance of the anchoring system. This article studies the surface treatment process of the CFRP cable base material and compares the improvement effect of the CFRP rod cable anchoring performance under different surface treatment processes. The results show that polishing the surface of CFRP rod cables with 16-grit sandpaper and bonding 26 to 40 mesh quartz sand can improve the load-bearing performance of anchor nodes by 361.1% compared with smooth rod cables. The research results can provide an important basis for the production of improved CFRP rod and cable anchor systems.
-
Key words:
- CFRP cable /
- anchorage performance /
- bond slip /
- surface treatment /
- bearing capacity
-
[1] 韩娟,刘伟庆,方海. 纤维增强树脂基复合材料在土木基础设施领域中的应用[J]. 南京工业大学学报(自然科学版),2020,42(5):543-554. [2] ELREFAI A,WEST J,SSOUDKI K. Performance of CFRP tendon-anchor assembly under fatigue loading[J]. Composite Structures,2007,80(3):352-360. [3] YANG Y,WANG X,WU Z,et al. Damping properties of FRP cables for long-span cable-stayed bridges[J]. Materials and Structures,2016,49(7):2701-2713. [4] XIE G H,YIN J,LIU R G,et al. Experimental and numerical investigation on the static and dynamic behaviors of cable-stayed bridges with CFRP cables[J]. Composites Part B:Engineering,2017,111:235-242. [5] WANG X,WU Z S. Evaluation of FRP and hybrid FRP cables for super long-span cable-stayed bridges[J]. Composite Structures,2010,92(10):2582-2590. [6] KARBHARI V M. Use of composite materials in civil infrastructure in Japan[M]. Baltimore,MD,USA:International Technology Research Institute,1998. [7] MEIER H,MEIER U,BRÖNNIMANN R. Zwei CFK-Kabel für die storchenbrücke[J]. Schweiz Ing Archit,1996,114:980-985. [8] MEIER U. Structural tensile elements made of advanced composite materials[J]. Struct Eng Int,1999(9):281-285. [9] 吕志涛,梅葵花. 国内首座CFRP索斜拉桥的研究[J]. 土木工程学报,2007(1):54-59. [10] WANG L,ZHANG J,XU J,et al. Anchorage systems of CFRP cables in cable structures:a review[J]. Construction and Building Materials,2018,160:82-99. [11] WU J,XIAN G,LI H. A novel anchorage system for CFRP cable:Experimental and numerical investigation[J]. Composite Structures,2018,194:555-563. [12] MEI K,SERACINO R,LYU Z. An experimental study on bond-type anchorages for carbon fiber-reinforced polymer cables[J]. Construction and Building Materials,2016,106:584-591. [13] KOLLEGGER J. Verankerung für ein vorgespanntes und/oder belastetes Zugelement und Ankerbüchse:EP1259679 A1[P]. 2001-07-09. [14] MEIER U,MEIER H,KIM P. Anchorage device for high-performance fiber composite cables:US5713169A[P]. 1998-02-03. [15] 黎健,李婷,朱虹,等. 附加肋提升复材筋锚固性能的试验研究[J]. 南京工业大学学报(自然科学版),2017,39(5):51-56. [16] 李彪,杨勇新,赵进阶,等. 结构工程用碳纤维复材筋力学性能影响[J]. 建筑结构,2020,50(2):72-75. [17] MEIER U,FARSHAD M. Connecting high-performance carbon-fiber-reinforced polymer cables of suspension and cable-stayed bridges through the use of gradient materials[J]. Journal of Computer-Aided Materials Design,1996,3(1):379-384. [18] American Society of Testing Materials. Standard test method for tensile properties of fiber reinforced polymer matrix composite bars:ASTM D7205/D7205M-21[S]. Philadelphia:ASTM,2021. -
点击查看大图
计量
- 文章访问数: 7
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: