Research on the Effects of Local Deformation on the Bearing Capacity of Equilateral Single-Angle Steel Members Under Axial Compression
-
摘要: 角钢杆件的局部变形将导致构件承载力的显著下降。对含局部变形的等边单角钢杆件轴心受压试验结果进行有限元模型对比验证,同时对不同长细比下等边单角钢压杆进行了有限元数值分析,研究局部变形类型、变形尺寸、长细比、变形位置对等边单角钢压杆轴心抗压承载力的影响。结果表明:不同程度局部变形下,角钢极限承载力下降34.70%~58.38%;角钢极限承载力随着长细比的增大先迅速减小后缓慢增大;局部变形对角钢承载力的影响随着长细比的增加逐渐减小;当变形量超过0.3W(W为角钢翼缘宽度)时,随着距杆件边缘距离的增大,角钢极限承载力呈现出近似线性下降趋势。Abstract: The local deformation of angle steel members will significantly reduce the bearing capacity of the components. In the paper, finite element model comparison and validation were performed on the axial compression test results of equilateral single-angle steel members with local deformation. Meanwhile, finite element numerical analysis was conducted on equilateral angle steel compression members with different slenderness ratios to study the influence of local deformation type, deformation size, slenderness ratio, and deformation location on the bearing capacity of equilateral angle steel members under axial compression. The results showed that under different degrees of local deformation, the ultimate bearing capacity of angle steel decreased by 34.70% to 58.38%. Furthermore, the ultimate bearing capacity of angle steel decreased rapidly and then slowly increased with the increase of slenderness ratio. The influence of local deformation on the bearing capacity of angle steel decreased gradually with the increase of slenderness ratio. When the deformation size exceeded 0.3W(W was the width of the angle steel flange), the ultimate bearing capacity of angle steel presented an approximately linear decrease trend with the increase of distance from the edge of the member.
-
[1] 刘海锋,朱彬荣,孙珍茂,等. 大宽厚比对称填板双角钢十形组合构件轴压试验与设计方法对比[J]. 建筑结构学报,2018,39(7):123-130. [2] 庞文辉. 角钢塔力学结构分析及安全评估方法研究[D]. 北京:北京邮电大学,2017. [3] 中华人民共和囯住房和城乡建设部. 钢结构设计标准:GB 50017—2017[S]. 北京:中国建筑工业出版社,2018. [4] 国家能源局. 架空输电线路杆塔结构设计技术规程:DL/T 5486—2020[S]. 北京:中国计划出版社,2020. [5] American Society of Civil Engineers(ASCE). Design of latticed steel transmission structures:A SCE 10-97[S]. Virginia:ASCE,2000. [6] British Standards Institution(BSI). Lattice towers and masters,part3:code of practice for strength assessment of members of lattice towers and masts:BS 8100-3[S]. London:BSI,2001. [7] American Institute of Steel Construction(AISC). Specification for structural steel buildings:ANSI/AI SC 360-22[S]. Chicago:AISC,2022. [8] British Standards Institution(BSI). Overhead electrical lines exceeding AC 1 kV,part1:general requirements-common specifications:BS EN 50341-1 ∶2012[S]. London:BSI,2012. [9] 常好诵,姜忻良,谢剑,等. 带有局部变形缺陷的单角钢承载力研究[J]. 工业建筑,2014,44(4):128-130. [10] 常好诵,姜忻良,谢剑,等. 局部变形单角钢轴心受力试验研究[J]. 工业建筑,2013,43(6):117-119,66. [11] 聂劲,幸坤涛,杨建平. 局部变形的双角钢拉杆抗拉承载力研究[J]. 工业建筑,2022,52(12):101-106. [12] 沈祖炎,胡学仁. 单角钢压杆的稳定计算[J]. 同济大学学报,1982(3):56-71. [13] NARAYANAN R. Axially compressed structures,stability and strength[M]. London:Applied Science,1982. [14] POPOVIC D,HANCOCK G J,RASMUSSEN K J R. Compression tests on cold-formed angles loaded parallel with a leg[J]. Journal of Structural Engineering,2001,127(6):600-607. [15] YUN X,GARDNER L. Stress-strain curves for hot-rolled steels[J]. Journal of Constructional Steel Research,2017,133:36-46. [16] 孙邦豹. 钢结构局部变形识别与性能评估技术研究[D]. 北京:中冶建筑研究总院有限公司,2023. -

计量
- 文章访问数: 46
- HTML全文浏览量: 9
- PDF下载量: 4
- 被引次数: 0