A Method for Evaluating Subgrade Bearing Capacity of Deep Rock Mass Using Load-Transfer Piles
-
摘要: 依托广东狮子洋大桥工程,为狮子洋超大跨悬索桥锚碇基础确定合理的基底持力层承载力,采用双层护壁法钻孔灌注桩工艺施做深层平板载荷试验传力桩,其中内层钢筋笼套裹0.8 m直径钢护筒作为内侧护壁,以最大程度降低桩侧摩阻力,保证加载的荷载完全传递至桩端底部,外层采用1.2 m钢护筒作为钻孔护壁,内外壁之间填充碎石,确保传力桩与孔壁稳定。此外,通过提高泥浆相对密度控制标准,严格确保首灌开始与二次清孔结束无缝衔接,以优化并改善桩端沉渣清渣工艺。采用预埋桩身钢筋计监测桩端应力,预置桩端沉降监测钢筋以监测桩端沉降的方法得到试验荷载-沉降曲线,分析得到持力层承载力特征值。试验结果表明:锚碇中风化持力层承载力特征值建议取2461 kPa,通过采用双层护壁法钻孔灌注桩进行深层载荷板试验的方法有效可行。Abstract: Based on the Guangdong Shiziyang Bridge project, the reasonable bearing capacity of the foundation bearing layer was determined for the anchorage foundation of the super long-span suspension bridge. The double-walled bored cast-in-place pile technology was adopted to construct the load-transfer piles for the deep loading plate test. The inner steel cage was wrapped in a 0.8 m diameter steel casing that served as the inner wall, thereby minimizing the pile side friction and ensuring the full transfer of the applied load to the pile tip. For the outer layer, a 1.2 m steel casing was used for borehole wall protection, with gravel filled between the inner and outer walls to ensure the stability of both the load-transfer pile and the borehole wall. In addition, the sediment removal process at the pile tip was optimized by tightening the control standards for slurry density and ensuring a seamless transition between the commencement of the initial concreting and the completion of the second-stage hole cleaning. The test Q-s curve was obtained through methods employing pre-embedded rebar gauges on the pile body to monitor tip stress and pre-installed settlement monitoring rebars to measure tip settlement. The bearing capacity characteristic values of the bearing layer were then determined through analysis. The test results demonstrated that the characteristic value of the bearing capacity for the moderately weathered bearing layer was recommended to be 2461 kPa, and confirmed the effectiveness and feasibility of the deep loading plate test method using the double-walled bored pile technology.
-
[1] 吴丽萍,吴银柱,杨国春,等. 深层平板载荷试验装置的研究[J]. 工程勘察,2001(6):4-7. [2] 武丹丹,杨成斌,王江涛. 深层平板载荷试验在某工程中的应用[J]. 建筑结构,2015,45(1):91-93. [3] 郑杰圣. 深层平板载荷试验在全风化花岗岩中的应用[J]. 福建建设科技,2014(4):26-28. [4] 张力,王笑. 深层载荷板试验构造和装置研究[J]. 建筑结构,2018,48(增刊1):830-832. [5] 张志敏,高文华,丁佑良. 深层平板载荷试验确定人工挖孔桩软岩桩端承载力的研究[J]. 建筑科学,2007(7):75-77. [6] 伦玉宁. 深层平板载荷试验传力装置的改进与应用研究[J]. 建筑监督检测与造价,2019,12(3):29-32. [7] 陈新奎,谢礼飞,戴国亮. 新型深层载荷板试验设计及分析[C]// 第十一届深基础工程发展论坛论文集. 北京:中国建筑工业出版社数字出版中心,2021:203-205. [8] 中华人民共和国交通运输部. 公路桥涵地基与基础设计规范:JTG 3363—2019[S]. 北京:人民交通出版社,2019. [9] 常士骠,张苏民. 工程地质手册[M]. 5 版. 北京:中国建筑工业出版社,2007. -
点击查看大图
计量
- 文章访问数: 7
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: