Proportionality Coefficient m for the Horizontal Foundation Reaction Coefficients Considering the Support Temperature Effect
-
摘要: 在用“m”法进行基坑支护结构或其他承受水平荷载的支挡结构设计计算时,需首先确定地基水平反力系数的比例系数m这个重要参数,m取值是否准确影响工程设计的合理性和安全性。总结了目前支护结构或支挡结构设计计算的几种确定比例系数m的常用方法;提出基坑支护工程层状土地基水平反力相等假定条件下的比例系数m值的计算方法。结合基坑工程项目实践利用自动化监测平台的支撑轴力监测数据,建立基坑支护工程具体支撑布置条件下因温度变化引起的支撑轴力增量与地基水平反力系数的比例系数m的相关性函数关系式,实现反演求取地基水平反力系数的比例系数m值。同时结合该基坑工程项目建立力学模型,运用Plaxis软件采用数值模拟的方法求m值。最后将该项目实测和模拟的求解结果与本文提出的地基土层水平反力相等法及原有的地基土层厚度平均法进行比对,验证本文介绍的地基土层水平反力相等法算式的可行性。Abstract: When using the "m-method" to design and calculate the foundation pit support structure or other support structures subjected to horizontal loads, it is essential to first determine the proportional coefficient m of the foundation’s horizontal reaction force coefficient as a key parameter. The accuracy of the m value directly affects the rationality and safety of the engineering design. This paper summarized several common methods for determining the proportional coefficient m in the design and calculation of support structures or retaining structures. It also put forward a calculation method for the proportional coefficient m under the assumption of equivalent horizontal reaction force in layered soil foundations for foundation pit support projects. Combined with the practice of a specific foundation pit project, axial force monitoring data from the automatic monitoring platform of the support system were used to establish the correlation between the increment of axial force in the support system caused by temperature changes and the proportional coefficient m of the foundation's horizontal reaction force coefficient, under specific support arrangement conditions. This enables the inversion of the m value. Simultaneously, a mechanical model was established for this foundation pit project, and Plaxis software was employed to determine the m value by numerical simulations. Finally, the results obtained from field measurements and numerical simulations in this project were compared with both the method of equivalent horizontal reaction force proposed in this paper and the conventional method of average thickness of foundation soil layer, thereby verifying the feasibility of the formula proposed for the equivalent horizontal reaction force method.
-
[1] 中华人民共和国住房和城乡建设部. 建筑基坑支护技术规程:JGJ 120—2012[S]. 北京:中国建筑工业出版社,2012. [2] 中华人民共和国住房和城乡建设部. 建筑桩基技术规范:JGJ 94—2008[S]. 北京:中国建筑工业出版社,2008. [3] 中华人民共和国住房和城乡建设部. 建筑地基基础设计规范:GB 50007—2011[S]. 北京:中国建筑工业出版社,2011. [4] 中华人民共和国交通运输部. 公路桥涵地基与基础设计规范:JTG 3363—2019[S]. 北京:人民交通出版社,2020. [5] 深圳市住房和建设局. 边坡工程技术标准:SJG 85—2020[S]. 北京:中国建筑工业出版社,2021. [6] 别社安,李增志,赵冲久. 地连墙结构m法计算中的问题和改进[J]. 土木工程学报,2003,36(10):19-23. [7] 黄晓亮,岳建伟,李连东,等. 组合桩地基土水平抗力系数的比例系数m的计算方法[J]. 岩土工程学报,2011,33(增刊2):192-196. [8] 吴锋,时蓓玲,卓杨. 水平受荷桩非线性 m 法研究[J]. 岩土工程学报,2009,31(9):1398-1401. [9] 宋建学,翟永亮,莫莉. 基于支撑内力和支护桩位移实测量的 m 值反演[J]. 岩土工程学报,2010,32(增刊1):156-160. [10] 金亚兵,沈翔,劳丽燕. 温度变化对深基坑内支撑轴力和变形的影响研究[J]. 岩土工程学报,2021,43(8):1417-1425. [11] REESE L C,COX W R,KOOP F D. Analysis of laterally loaded piles in sand[C]// Proceedings of the 6th Annual Offshore Technology Conference. Houston:1974:473-483. [12] 赵明华,刘峻龙,刘建华. 双层地基横向受荷桩简化计算方法研究[J]. 公路交通科技,2006,23(12):58-61. [13] GUO W D. Nonlinear response of laterally loaded piles and pile groups[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2009,33(7):879-914. [14] 李佳. 基坑开挖位移及土体水平抗力比例系数的反分析[J]. 南水北调与水利科技,2017,15(2):185-191. [15] SHEN W Y,TEH C I. Analysis of laterally loaded piles in soil with stiffness increasing with depth[J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(8):878-882. [16] 戴自航,陈林靖. 多层地基中水平荷载桩计算 m 法的两种数值解[J]. 岩土工程学报,2007,29(5):690-696. [17] YANG K,LIANG R. Numerical solution for laterally loaded piles in a two-layer soil profile[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(11):1436-1443. [18] 金亚兵,龚淑云,杨傲,等. 边坡与基坑自动化监测技术及实践[M]. 北京:地质出版社,2019. -
点击查看大图
计量
- 文章访问数: 5
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: